Coherent imaging of magnetic domains on Sextants beamline

Beamline team:

- R. Gaudemer => Assistant Engineer
- H. Popescu => Scientist in charge Coherent Scattering/FTH
- A. Nicolaou => Scientist in charge of RIXS
- N. Jaouen => Principal beamline scientist
- J.Y Chauleau => Post Doc RESOXS

K Ruotsalainen => Post Doc RIXS

Research Associates:

(LCPMR, Paris):
(I. Néel, Grenoble):
(INSP, Paris):
M. Sacchi

Outline:

- Sextants beamline
- Coherent scattering instruments on Sextants :
 - COMET : transmission
 - IRMA2 : reflectivity
- Coherent imaging techniques :
 - Holography
 - Ptychography
- Conclusion: transmission ok
 - reflectivity : we need the round beam 🙂 !!

• Beamline of phase 2 : (R. Gaudemer, H. Popescu, A. Nicolaou, N. Jaouen)

First Experiment: End 2010

First expert users: first semester 2011

(open to users 2011)

- Energy range : 50-1800 eV (N, O, F, transition metals, rare earth, S, ...),
- High flux : >10¹³ ph/s on the sample,
- **Resolving power** $\Delta E/E \ge 8000$ over the whole energy range,
- Variable polarization: linear and circular:
 - 2 Apple-II undulator: circular +/-, variable linear
 HU80 + HU44: the whole energy range in first harmonic
 ⇒ Maximize flux and polarization
- Two branches and 3+1 experimental stations (UHV):
 - High resolution RIXS Spectrometer
 - Two UHV diffractometers
 - One set-up for coherent imaging in transmission
 - User set-up.

Three main techniques:

- Soft X-ray resonant magnetic scattering (XRMS)

(Magnetic multilayers, nanostructures, single crystal diffraction)

- Resonant Inelastic X-ray Scattering (RIXS)

Strongly correlated systems, non-solid systems (gaz/liquide)

- Coherent X-ray scattering (CXS)

(Lensless microscopy, dynamical studies in imaging)

One experimental point open for user set up

- SEXTANTS Beamline - Flux & Coherence

FLUX

Flux measured @ sample position after 5 mirrors and one grating:

In excess of 3 10¹²ph/s in the 50-1000eV energy range

H. Popescu, Workshop Round Beam, Soleil (14/06/2017)

COHERENCE:

- for full beamline angular acceptance
- Reduce acceptance (close beamline

slits)

Angular Acceptance MaskCalc. $150 \times 150 \,\mu rad^2 \quad 40 \times 40 \,\mu rad^2$

Estimated transverse coherence at 778 eV (hor. \times vert.)

- $8\mu m \times 15 \mu m$ @ full acceptance
- **25 \mum × 25 \mum @ 40 × 40 \murad²**

M. Sacchi, H. Popescu, F. Fortuna, R. Delaunay, N. Jaouen J. Phys. Conf. Series, 2012

Coherent scattering instruments on Sextants:

COMET : transmission

IRMA2 : reflectivity

COMET instrument : **Co**herent **M**agnetic scattering **E**xperiments in **T**ransmission

- Imaging by Fourier Transform Holography (FTH) and Ptychograpgy
- Integrated or separated mask/sample approach
- extandable field of view
- Normal or tilted transmission geometry for imaging out-of-plane or in-plane magnetic domains, respectively
- Magnetic field: 500 Oe in pulsed mode (1 T static in 2017)
- Low temperature: 100K (20K in 2017)
- regular spatial resolution: ~ 30 nm

(with standard masks available for users)

H. Popescu, Workshop Round Beam, Soleil (14/06/2017)

Internal mechanics:

In 2017 : 1 Tesla and He temperature

4 permanent magnets:

- tunable intensity
- all horizontal directions
- each magnet is motorized around it's axis
- commercial He cryostat + flexible stripes

Fourier Transform Holography (FTH) imaging technique

S. Eisebitt et al., Vol 432, 2004, Nature

object: $o(x,y) = E_0 t_o(x,y)$ reference: $r(x,y) = E_0 t_r(x,y)$

Hologram intensity:

$$= | \mathbf{F} \{ \mathbf{r} + \mathbf{o} \} |^{2}$$

= | R + O | ²
= | R | ² + | O | ² + OR* + RO*

Reconstructed real space images:

 $F{Hologram intensity} = r \star r + o \star o + o \star r + r \star o$

Advantages: - easy to align,

- stable against vibrations

- sample environment (temperature, magnetic fields, etc.)

Disadvantage: fixed field of view, difficult fabrication

H. Popescu, Workshop Round Beam, Soleil (14/06/2017)

FTH Imaging of perpendicular magnetic domains using circular polarization

diffraction diagram

reconstructed image

Co/Pd multilayer - perpendicular magnetization - meander domains

Co/Pd multilayer Co-L₃ edge Circularly polarized radiation

Holographic magnetic imaging of single layer nano-contact spin transfer oscillators

15 nm spatial resolution ! (using a slit for the reference beam)

E. O. Burgos Parra et al., IEEE Transactions on Magnetics, Volume PP, Issue 99 (2016)

Grenoble

diamond

Experimental Principle

Static Measurement

VERSITY OF

ΓER

- Time resolved imaging of Vortex Dynamic

Soft x-ray EXperimenT resonANT

- 8 bunch @ SEXTANTS beamline; 146 ns delay
- 2 μm x 2 μm Py square, ~50 nm thick
- Spatial Resolution: 35 nm per pixel
- Temporal Resolution: 250/500 ps
- An RF pulse (60ns width, 1ns rise time) excited core gyration

In plane: Vortex Dynamic

SCIENTIFIC **REP<mark>O</mark>RTS**

N bukin et al, Scientific Reports, 2016, 6: art.n° 36307

- Time resolved imaging of Vortex Dynamic

Static image

Soft x-ray EXperimenT resonAN

- 8 bunch @ SEXTANTS beamline; 146 ns delay
- 2 μm x 2 μm Py square, ~50 nm thick
- Spatial Resolution: 25 nm per pixel
- Temporal Resolution: 250/500 ps
- An RF pulse (60ns width, 1ns rise time) excited core gyration

Out of Plane: Vortex + DW Dynamic

SCIENTIFIC REPORTS

N bukin et al, Scientific Reports, 2016, 6: art.n° 36307

H. Popescu, Workshop Round Beam, Soleil (14/06/2017)

H. Popescu, Workshop Round Beam, Soleil (14/06/2017)

Disadvantage: challenging alignment, stability

H. Popescu, Workshop Round Beam, Soleil (14/06/2017)

Soft x-ray EXperiment resonANT Scattering

FTH imaging of perpendicular magnetic domains using the extended field of view

Sext ants Set x or PEAperiment researANT Southering Linear polarization in normal incidence for out of plane magnetization (interest for FEL and HHG surces)

General idea: the reference wave is also crossing the magnetic layer

777eV, LP 773 eV, LP 778 eV, CP

Vol. 20, No. 9 / OPTICS EXPRESS 9776 (2012)

Transmission geometries :

Holographic imaging of in-plane magnetic domains at tilted geometry (30°) with movable field of view

H. Popescu et al., APL 107 (20) 2015

Holography with separated mask : 'magnetic bubles'

Sample (Co0.6/Pt1)x30

90nm magnetic bubbles

Coll. N Reyren, V. Cros UMPhy CNRS-Thales

Holographic imaging of 600 nm dots with integrated mask and Heraldo technique

Reconstructed image:

Reconstructed image (phase scan):

25 nm resolution

Ptychography imaging technique:

A 2D diffraction diagram is recorded for each sample position. If enough overlap, by iterative algorithmes the sample transmission can be reconstructed.

Ptychography imaging technique (reconstruction algorithmes by Kadda Medjubi)

H. Popescu, Workshop Round Beam, Soleil (14/06/2017)

Ptychography imaging technique:

ging technique:

(reconstruction algorithmes by Kadda Medjubi)

Probe beam: 2µm pinhole placed at 2 mm from the sample Sample XZ scan with 500 nm steps

Reflectivity, Diffraction, Coherent scattering, X-ray imaging

M. Sacchi, H. Popescu, F. Fortuna, R. Delaunay, N. Jaouen, J. Phys. Conf. Series, 2012

IRMA2 instrument: 2D detector positions

2D detector at 60°

H. Popescu, Workshop Round Beam, Soleil (14/06/2017)

2D detector in transmission

Ptycography test in reflectivity

IRMA2

2D detector at 90°:

8 1µm 188483

Py pattern

probe beam : 5 μm pinhole step_x : 1.1 μm step_z: 1.3 μm reconstructed pixel size: 27 nm

Reconstructed image:

H. Popescu, Workshop Round Beam, Soleil (14/06/2017)

(reconstruction algorithmes by Kadda Medjubi)

Ptychography in reflectivity on a real magnetic sample: (MnAs/GaAs, alpha/beta stripes with 900 nm period)

Diffraction diagram in reflectivity at 90°

with 22 microns pinhole

Structural (Alpha and Beta stripes) (CL + CR)

900 nm

Magnetic domains

(CL - CR)

CL : circular left **CR**: circular right

Holography in reflectivity with movable field of view

mask

Diffraction diagram

Reconstructed image with slit reference (Heraldo linear differential filter)

Reconstructed image with classic referece hole (simple Fourier transform)

Conclusion:

Sextants beamline is adapted for coherent diffraction imaging

Coherent scattering instruments on Sextants

- COMET : transmission
- IRMA2 : reflectivity

Imaging techniques :

- Holography (state of the art 15 nm resolution)
- Ptychography (under developpement)

Geometries:

- In transmission : ok !
- In reflectivity : we really need the round beam !!