High Aspect Ratio LIGA Apertures in an X-ray Pinhole Camera

L. Bobb

diamond
 X-ray Pinhole Overview

X-ray camera

FIG. 1. Schematic of the pinhole camera system and the decomposition of the PSF. The relativistic electron beam (e beam) goes through a bending magnet (BM), emitting synchrotron radiation (SR). The electron beam is imaged by the pinhole onto the x-ray camera. For each element having a PSF Gaussian, the total PSF, $\Sigma_{0}^{2}=S_{\text {pinhole }}^{2}+S_{\text {camera }}^{2}$.
C. Thomas et al., "X-ray pinhole camera resolution and emittance measurement", Phys. Rev. ST Accel. Beams 13, 022805, (2010).

PSF = Point Spread Function

diamond

Pinhole Requirements

- Rectangular and cylindrical holes in a screen where the edges of the hole through the bulk material are perpendicular to the screen surface.
- Opaque to keV X-rays
\rightarrow high atomic number material e.g. tungsten, gold, ... $\rightarrow 1$ mm thickness.
- $10-25 \mu \mathrm{~m}$ apertures (typically).

$$
\rightarrow 1: 100 \text { aspect ratio }
$$

diamond

 What is LIGA?

 What is LIGA?}

German acronym for X-ray lithography (X-ray lithographie), electro-deposition (galvanoformung), and molding (abformtechnik).

Electroforming

M. Madou, "'Chapter 10: Micromolding Techniques - LIGA', Fundamentals of Microfabrication and Nanotechnology, Vol. 2, Third Ed., CRC Press, 2012, p.591642.

diamond

Pinhole Screen Designs (1)

- Rectangular and circular holes for direct imaging of the electron beam.
- $10-400 \mu \mathrm{~m}$ width (square) or diameter (circle).
- Arrays of holes for averaging the beam size at a specific location in the storage ring.
- Allows investigation of the PSF from different shape and size apertures.

diamond

Pinhole Screen Designs (2)

- Single and double slits for X-ray interferometry.
$10-50 \mu \mathrm{~m}$ slit width.
- 1 mm slit length.
- $400 \mu \mathrm{~m} \times 400 \mu \mathrm{~m}$ alignment aperture.

Development Status (1)
Chrome Mask Design and Fabrication \boldsymbol{V}

Chrome Mask Design and Fabrication $\boldsymbol{\checkmark}$

Development Status (2)

Metrology of Structures in Developed Resist $\boldsymbol{\checkmark}$
Since the gold screens are made by electroplating the developed resist, it is assumed that the aperture sizes in the 1 mm thick gold screens must be equal to the structures of the developed resist.

Why?!

FIG. 12. (Color) FWHM of the PSF of pinhole 2 as a function of the slit apertures and for several thickness of Al filter.

Imaging the electron beam with the different aperture sizes, I plan to generate a similar plot using real data, to that shown (left) from simulations.

In this way, I can choose the optimum pinhole aperture to minimise the PSF for a given photon energy.
C. Thomas et al., 'X-ray pinhole camera resolution and emittance measurement"', Phys. Rev. ST Accel. Beams 13, 022805, (2010).

diamond

Thank you for your attention!

Acknowledgements
Thanks to K. Sawhney and I. Pape for the use of the B16 beamline and many useful discussions. Thanks are also attributed to G. Arthur from Scitech Precision.

Extra slides

B16 Source Parameters

B16 Source

All data form XOP

Sample Layout

Spectra at PMMA through X-ray mask

HOLE:

Power per horiz mrad $=18 \mathrm{~W} / \mathrm{mrad}$

Diamond beamline geometry:
1 mrad at 40 m illuminates 40 mm

Power per horiz mm $=0.45 \mathrm{~W} / \mathrm{mm}$

Collimating beam width 50mm:
Power incident on sample $=23 \mathrm{~W}$

Vertical opening angle = 1/gamma (gamma = 5870)
So $6.8 \mathrm{~mm} \times 50 \mathrm{~mm}$ strip is exposed

MASK:

Power per horiz mrad $=1.7 \mathrm{~W} / \mathrm{mrad}$

Diamond beamline geometry:
1 mrad at 40 m illuminates 40 mm

Power per horiz mm $=0.04 \mathrm{~W} / \mathrm{mm}$

Collimating beam width 50 mm :
Power incident on sample = 2.1W

Vertical opening angle = 1/gamma (gamma = 5870)
So $6.8 \mathrm{~mm} \times 50 \mathrm{~mm}$ strip is exposed

Extinction Ratio $=43$

diamond
 Compare top/bottom PMMA

0.5 mm Be

1m Air
0.5 mm At

125 um Kapton
100 nm Gold seed
25 um Gold
1.3 mm PMMA

HOLE:

Power absorbed in top 100um of the PMMA ($6.8 \mathrm{~mm} \times 50 \mathrm{~mm}$) $=0.54 \mathrm{~W}$
Power absorbed in bottom 100um of the PMMA $(6.8 \mathrm{~mm} \times 50 \mathrm{~mm})=0.34 \mathrm{~W}$

```
HOLE:
trapz(dls_p(:,1), dls_p(:,2).*Be(:,2).*air(:,2).*kapton(:,2).*goldseed(:,2).*(1-pmma(:,2).^(1/10)))/...
trapz(dls_p(:,1), dls_p(:,2).*Be(:,2).*air(:,2).*kapton(:,2).*goldseed(:,2).*(pmma(:,2).^(9/10)).*(1-pmma(:,2).^(1/10)))
ans=1.5959
```


diamond Exposure Time for Specified Dose

- Volume of exposed strip ($\mathrm{h} \times \mathrm{v} \times \mathrm{d}$)
$=50 \mathrm{~mm} \times 7 \mathrm{~mm} \times 1.3 \mathrm{~mm}$
- Consider the bottom 100um of the PMMA Therefore,
Volume of exposed strip (h x vxd)
$=50 \mathrm{~mm} \times 7 \mathrm{~mm} \times 0.01 \mathrm{~mm}$
$=0.035 \mathrm{~cm}^{\wedge} 3$
- Dose = Energy absorbed / Volume So,
Energy absorbed = Dose * Volume
- Given Dose $=4500 \mathrm{~J} / \mathrm{cm}^{\wedge} 3$:

Energy absorbed $=4500$ * $0.035 \mathrm{~cm}{ }^{\wedge} 3=157 \mathrm{~J}$

- \quad Power $=$ Energy/Time

So,
Time = Energy/Power

- Exposure time for $7 \mathrm{~mm} \times 50 \mathrm{~mm}$ area $=157 / 0.34=0.13$ hours

diamond Exposure Time for Specified Dose

Dose [J/cm^3]	Energy absorbed in bottom 100um of PMMA *[J]	Power absorbed in bottom 100um of PMMA *[W]	Exposure time required *[hour]	Exposure time required per screen row +[hour]
2500	87.5	0.34	0.07	0.12
3500	122.5		0.10	0.17
4500	157.5		0.13	0.22
6000	210.0		0.17	0.29

Setup:
0.5 mm Be

1m Air
0.5 mm At

125 um Kapton
100 nm Gold seed
25 um Gold
1.3 mm PMMA

Since we cannot attenuate the beam and maintain a good extinction ratio we need cooling \rightarrow Air blower
\rightarrow Water cooled copper block
*Assuming $7 \mathrm{~mm} \times 50 \mathrm{~mm}$ exposure area ${ }^{+}$Assuming $12 \mathrm{~mm} \times 50 \mathrm{~mm}$ exposure area

