

High Aspect Ratio LIGA Apertures in an X-ray Pinhole Camera

L. Bobb

L.M. Bobb and G. Rehm, ``Beam Size Measurement Using High Aspect Ratio LIGA Apertures in an X-Ray Pinhole Camera'', Proc. IPAC2017 (MOPAB132)

X-ray Pinhole Overview

FIG. 1. Schematic of the pinhole camera system and the decomposition of the PSF. The relativistic electron beam (e beam) goes through a bending magnet (BM), emitting synchrotron radiation (SR). The electron beam is imaged by the pinhole onto the x-ray camera. For each element having a PSF Gaussian, the total PSF, $\Sigma_0^2 = S_{\text{pinhole}}^2 + S_{\text{camera}}^2$.

C. Thomas et al., ``X-ray pinhole camera resolution and emittance measurement'', Phys. Rev. ST Accel. Beams 13, 022805, (2010).

diamond

- Rectangular and cylindrical holes in a screen where the edges of the hole through the bulk material are perpendicular to the screen surface.
- Opaque to keV X-rays

 → high atomic number
 material e.g. tungsten, gold, ...
 → 1 mm thickness.
- 10 25 μm apertures (typically).

Traditional pinhole assembly 25 µm 50 µm 50 µm 25 µm 25 um

L.M. Bobb et al., ``Performance Evaluation of Molybdenum Blades in an X-ray Pinhole Camera'', Proc. IBIC2016, p. 796-799.

What is LIGA?

Pinhole Screen Designs (1)

1000

Rectangular and circular holes for direct imaging of the electron beam.

diamond

- $10 400 \,\mu\text{m}$ width (square) or diameter (circle).
- Arrays of holes for averaging the beam size at a specific location in the storage ring.
- Allows investigation of the **PSF** from different shape and size apertures.

x [µm]

Imaging

Pinhole Screen Designs (2)

- Single and double slits for X-ray interferometry.
- 10 50 μm slit width.
- 1 mm slit length.

diamond

- 400 μm x 400 μm alignment aperture.
- Square apertures also included for imaging.

Development Status (1)

Chrome Mask Design and Fabrication 🖌

diamond

DEELS Workshop, 13th June 2017: LIGA Pinhole Fabrication, L. Bobb

X-ray Mask Fabrication 🖌

Development Status (2)

Metrology of Structures in Developed Resist 🗸

Since the gold screens are made by electroplating the developed resist, it is assumed that the aperture sizes in the 1 mm thick gold screens must be equal to the structures of the developed resist.

Why?!

Imaging the electron beam with the different aperture sizes, I plan to generate a similar plot using real data, to that shown (left) from simulations.

In this way, I can choose the optimum pinhole aperture to minimise the PSF for a given photon energy.

FIG. 12. (Color) FWHM of the PSF of pinhole 2 as a function of the slit apertures and for several thickness of Al filter.

C. Thomas et al., ``X-ray pinhole camera resolution and emittance measurement'', Phys. Rev. ST Accel. Beams 13, 022805, (2010).

Thank you for your attention!

Acknowledgements

Thanks to K. Sawhney and I. Pape for the use of the B16 beamline and many useful discussions. Thanks are also attributed to G. Arthur from Scitech Precision.

Extra slides

B16 Source Parameters

🐼 bm input parameters	
Accept Cancel Help	
Machine name DLS bending ma	Min Photon Energy [eV] 100.00000
B from: Magnetic Radius	Max Photon Energy [eV] 100000.00
Machine Radius [m] 7.1300001	Number of energy points 1000
	Separation between energy points
Beam energy [GeV] 3.0000000	Max Psi[mrad] for angular plots 1.0000000
Beam Current [A] 0.30000001	
Horizontal div Theta [mrad] 1.0000000	
Psi (vertical div) for energy spectra Full (integrated in Psi)	

B16 Source

All data form XOP

Sample Layout

diamond Spectra at PMMA through X-ray mask

HOLE:

Power per horiz mrad = 18W/ mrad

Diamond beamline geometry: 1 mrad at 40 m illuminates 40 mm

```
Power per horiz mm = 0.45 W/mm
```

Collimating beam width 50mm: Power incident on sample = **23W**

Vertical opening angle = 1/gamma (gamma = 5870) So 6.8 mm x 50mm strip is exposed

```
MASK:
```

Power per horiz mrad = 1.7W/ mrad

Diamond beamline geometry: 1 mrad at 40 m illuminates 40 mm

```
Power per horiz mm = 0.04 W/mm
```

```
Collimating beam width 50mm:
Power incident on sample = 2.1W
```

```
Vertical opening angle = 1/gamma
(gamma = 5870)
So 6.8 mm x 50mm strip is exposed
```

diamond Spectra absorbed by PMMA without Al

0.5 mm Be 1m Air 0.5 mm Al 125 um Kapton 100 nm Gold seed 25 um Gold 1.3 mm PMMA

Extinction Ratio = 43

diamond Compare top/bottom PMMA

0.5 mm Be 1m Air 0.5 mm Al 125 um Kapton 100 nm Gold seed 25 um Gold 1.3 mm PMMA

HOLE: Power absorbed in top 100um of the PMMA (6.8mm x 50 mm) = 0.54 W Power absorbed in bottom 100um of the PMMA (6.8mm x 50 mm) = 0.34 W

HOLE:

trapz(dls_p(:,1), dls_p(:,2).*Be(:,2).*air(:,2).*kapton(:,2).*goldseed(:,2).*(1-pmma(:,2).^(1/10)))/... trapz(dls_p(:,1), dls_p(:,2).*Be(:,2).*air(:,2).*kapton(:,2).*goldseed(:,2).*(pmma(:,2).^(9/10)).*(1-pmma(:,2).^(1/10)))

ans = 1.5959

Sequence of the sequence of th

- Volume of exposed strip (h x v x d)
 = 50 mm x 7 mm x 1.3 mm
- Consider the bottom 100um of the PMMA Therefore, Volume of exposed strip (h x v x d)
 = 50 mm x 7 mm x 0.01 mm
 = 0.035 cm^3
- Dose = Energy absorbed / Volume So, Energy absorbed = Dose * Volume
- Given Dose = 4500 J/cm^3: Energy absorbed = 4500 * 0.035 cm^3 = 157 J
- Power = Energy/Time
 So,
 Time = Energy/Power
- Exposure time for 7mm x 50mm area = 157/0.34 = 0.13 hours

Image: Second Exposure Time for Specified Dose

Dose [J/cm^3]	Energy absorbed in bottom 100um of PMMA *[J]	Power absorbed in bottom 100um of PMMA *[W]	Exposure time required *[hour]	Exposure time required per screen row *[hour]
2500	87.5	0.34	0.07	0.12
3500	122.5		0.10	0.17
4500	157.5		0.13	0.22
6000	210.0		0.17	0.29
Setup: 0.5 mm Be 1m Air 0.5 mm Al 125 um Kapton 100 nm Gold seed 25 um Gold 1.3 mm PMMA	Since we can beam and m extinction ra →Air blowe →Water cod	not attenuate the aintain a good tio we need cooling r bled copper block	20 mm	¹ 1 1 1 1 1 1 1 1 1 1 1 1 1 1

*Assuming 7 mm x 50 mm exposure area +Assuming 12 mm x 50 mm exposure area

DEELS Workshop, 13th June 2017: LIGA Pinhole Fabrication, L. Bobb

0.29 hr

(~18min)