
REVOLUTION status

Shu ZHANG, ECA group, Synchrotron SOLEIL

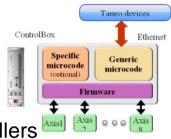
MOCRACF Workshop, Melbourne, ICALEPCS2015

REVOLUTION status

Context of REVOLUTION at SOLEIL

- CLASSIC controller evolution
- HIGH-PERFORMANCE controller standardization
 - Conclusion

REVOLUTION status


Context of REVOLUTION at SOLEIL

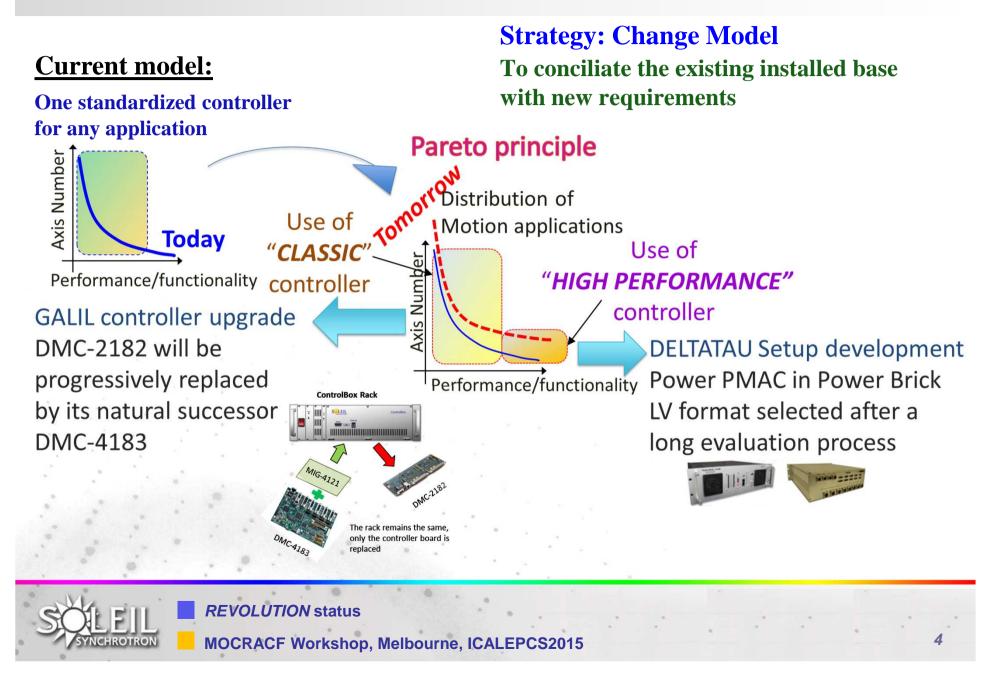
Revolution: Reconsider Various contrOLlers for yoUr motion \rightarrow Motion controller upgrade project currently in progress at SOLEIL

Status :

- Standardized hardware and software architecture
- Wide and homogenous installed base of motion controllers 0 320 operational ControlBox - 85% of axis controlled by CB

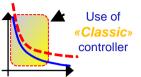
Motivation:

Very low long-term risk of obsolescence of 0 our standardized motion controller : GALIL DMC-2182

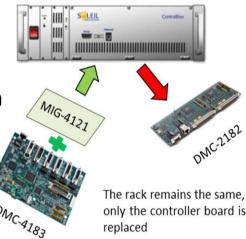


- New motion control applications become more complex and demanding 0 More performance More advanced functionnalities


Context of REVOLUTION at SOLEIL



CLASSIC controller evolution


- Hardware and software developments are mostly done to be fully compatible with current architecture
 - Hardware:
 - Interface board (MIG-4121) developed for rack internal pinout adaptation
 - -> Validated
 - Galil embedded software:
 - New feature of Galil firmware: "Continuous CLOSED-LOOP" on stepper motors
 - -> Validated in the lab, one non-reproducible bug identified on one beamline, being investigated
 - New microcode for the new firmware
 - -> Ongoing
 - Tango device:
 - Device to be adapted to be compatible with new feature Continuous closed-loop
 - -> To be developed

ControlBox Rack

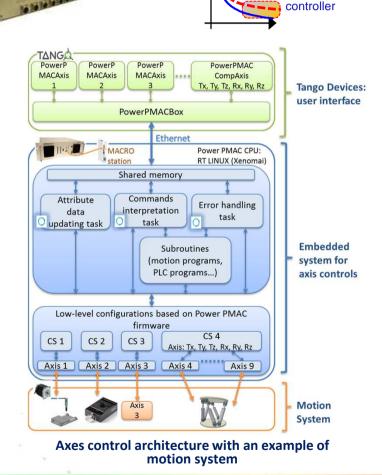
HIGH-PERFORMANCE CONTROLLER STANDARDIZATION

REVOLUTION status

Control architecture

- Hardware and software architectures defined in order to implement required applications
 - ✤ 8-axis controls
 - Built-in amplifier
 - MACRO network
 - standard connectivity

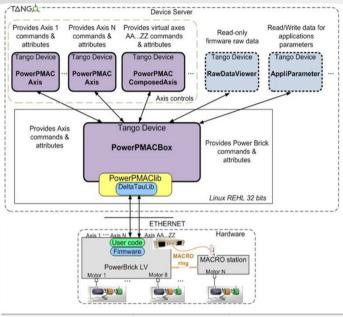
Standardized control architecture goals:

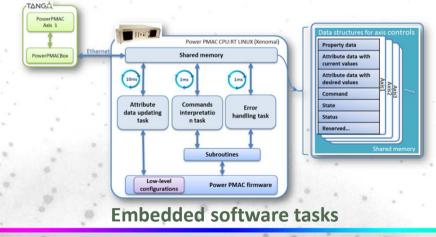

- **Consistency and usability**
 - Architecture close to the existing one

Performance benefits

Most process functions embedded into lowlevel in order to abstract the system complexity for the high-level software

Easy to use and maintain


Some standard functionalities for the hardware low-level configuration and in the embedded software developed


«High Performance»

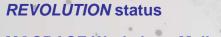
SYNCHROTRON REVOLUTION status

High-level / embedded software architecture

Software high-level architecture

Tango Devices:

- Controller and (physical & virtual) axis controls
- Diagnostic & parametrizing tools


Libraries:

- Communication library
- SOLEIL-made library
 - Link to the data structures stored in the shared memory of the controller

Embedded software:

- Interface for Tango axis controls
 Features:
- <u>Interpretation of commands</u>, only run if operating conditions allow
- Attribute data updating, parameters
- changed only within allowed conditions
- Error handling

MOCRACF Workshop, Melbourne, ICALEPCS2015

Embedded subroutines and low-level settings

Embedded subroutines implementation

- Some generic processing programs :
 - Motion programs for reference-position initialization
 - Duty cycle PLC program for motor stops within a certain period
 - Vacuum mode PLC program to switch motor current depending on the motor status (moving or stopped)

Low-level configurations for operations and archives

- GUI tool developed to automatically generate configuration files according to preselected parameters: channel number, motor type, encoder type, motor current etc.
- Procedures for installation and maintenance

# de l'axe	▼ ✓ Activer Moteur	
Boucle Fermée	Incrémental	-
Désactiver Buté Tension (en V)	es Courant (en mA)	
Tension (en V) 24	Courant (en mA)	

Hardware configuration files generator tool

SAMBA beamline application test

DCM control upgrade

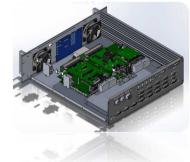
NCHROTRON

- \blacktriangleright To provide direct energy control \rightarrow continuous energy-scan operation
 - ✓ Configured for 7 main axes (R_x , T_{s2} , T_{z2} , C1, C2, R_{z2} , R_{s2})
 - ✓ Low-level settings validated
 - ✓ Kinematic equations implemented
 - Equation between E(photon energy in eV) and the angle θ (°) of the main axis Rx $E = hc \frac{1}{\lambda} = \frac{hc}{2d} \frac{1}{\sin(\theta)}$

10

• Remaining motors synchronized with Rx $T_{s2} = \max(T_{s2}^{Min}, \frac{H}{2\sin(\theta)}); T_{z2} = \frac{H}{2\cos(\theta)}$ $C_{1}(\frac{1}{R}) = A_{1,0} + A_{1,1}\frac{1}{R}; C_{2}(\frac{1}{R}) = A_{2,0} + A_{2,1}\frac{1}{R}$ $\frac{1}{R} = \frac{1}{2\sin(\theta)}(\frac{1}{p} + \frac{1}{q})$ $R_{s2} = P_{n}(\theta, c_{R_{s2}}); R_{z2} = P_{n}(\theta, c_{R_{s2}})$ $p_{n}(\theta, c) = \sum_{i=0}^{n} c_{i}\theta^{i} c = \begin{pmatrix} c_{0} \\ c_{1} \\ \vdots \end{pmatrix}$

> REVOLUTION status MOCRACF Workshop, Melbourne, ICALEPCS2015


Conclusion

REVOLUTION status

- → New CLASSIC controller: Hardware, Firmware functionally validated
- → HIGH PERFOMANCE controller: First test with Tango devices in progress
- New strategy of changing model being implemented
 - → New CLASSIC controller: operational continuity ensure.
 - → HIGH PERFOMANCE controller: control upgrade applications
 - □ Monochromator, Flyscan, Nanoprobe and Goniometer...

New complimentary product Power Brick controller specified

- Same CPU(Power PMAC) without built-in amplifier
 - Control upgrade direct and easy
 - Same tool settings & skill-sets without extra development

MOCRACF Workshop, Melbourne, ICALEPCS2015

REVOLUTION status