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Inside the Black Box of Data 
Processing

Harry Powell

MADaC-2015, Soleil

Workshop on Advanced Data Collection with Multi-Axis Goniometry

12th November 2015

This lecture provides an introduction to data processing of diffraction images 
obtained via the rotation method, which is the most widely used way of 
collecting data X-ray data from single crystals, both for macromolecules and 
small molecules.
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Overview - Data processing

May be divided into stages:

Data reduction:

• Indexing (Bravais lattice)

• Parameter refinement 

• Integration

Check symmetry

• Laue group

• maybe space group

Scaling and merging

• merging partials to form complete reflections

• merging symmetry equivalents

Truncation

• analyse intensity distribution 

• convert |F|2 to |F|)

Mosflm

Pointless

Aimless

Ctruncate

CCP4

iM
osflm

The process of converting the spots on a diffraction image to indexed and 
measured diffraction data that may be used in structural analysis consists of four 
basic parts, though in modern programs these tend to merge into a single 
workflow.
Measuring the intensity of spots on the images is “integration”. This can only be 
done well if the program knows the spot location, which is found approximately 
by indexing and then accurately by refinement of the crystal and detector 
parameters.
Once the measurements have been made, they are corrected for a variety of 
effects; purely geometrical effects are normally done by the integrating program 
– usually only Lorentz and polarisation effects. Other corrections, e.g. absorption 
by the crystal, differences between images (effective exposure, radiation damage, 
etc.) are either handled by the scaling and merging programs or by specialist 
programs devoted to particular aspects of the data.
Merging includes not only merging measurements of reflections that are 
equivalent by crystal symmetry, but also merging together the different 
components of reflections that are partially recorded over a number of adjacent 
images. This may be done either by the integration program (if it implements 3D 
profile fitting) or the scaling program (if the integration program performs a 2D 
analysis). Scaling attempts to put all of the observations onto a common scale, by 
accounting for errors and inconsistencies caused by the instrument or the crystal.
Truncation produces |F|s from these partially corrected  |F|2 measurements by 
taking account of expected statistical errors in measurement; analysing this 
process gives many of the diagnostics about twinning and also the Wilson 
statistics. 
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Indexing is the process which gives indices for the reflections - they are often 
called “Miller indices”, but strictly speaking these refer to the lattice planes 
perpendicular to the scattering vectors (which correspond to the reflections). 
Indexing provides us with the information required to integrate the images in a 
dataset; the unit cell parameters and orientation of the crystal (in combination 
with known instrument parameters such as crystal to detector distance, 
wavelength of radiation, etc.) tell us where the diffraction spots occur on the 
detector for each image.
Further, the unit cell dimensions are used in many of the subsequent 
calculations in structure determination and refinement. Accurate values 
(obtained after refinement) will mean that the derived results have higher 
significance.
If we can determine the Bravais lattice, symmetry constraints can be applied in 
refinement to make the process more stable. Further, if we can determine the 
symmetry (or at least eliminate low symmetry solutions) we can run data 
collection strategy software and make sure we collect complete data with as 
small a rotation range as possible; in the case of crystals that suffer significantly 
from radiation damage this can be very important.
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Provides
• indices for reflections (hkl)
• unit cell dimensions (a, b, c, α, β, γ)
• crystal orientation
• information about the crystal symmetry

Knowledge of these allows us to predict the positions of 
the diffraction spots on the image.

Unit cell dimensions are used in structure solution, 
refinement, model building, analysis - so we need accurate 
values.

Indexing

orientation 
matrix
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Indexing involves several distinct processes, the main ones of which are listed 
here. They start with "spot finding", or locating likely diffraction spots on the 
image or images (indexing tends to be more robust when information from 
several images separated in phi are used, rather than just from a single image).
The two-dimensional co-ordinates can be mapped (using the Ewald sphere 
construction) to scattering vectors that correspond to (approximate) 3D 
reciprocal lattice co-ordinates.  
Indexing itself within Mosflm uses a “real-space” method (i.e. the real space 
unit cell dimensions are obtained directly, rather than via the reciprocal space 
unit cell) using an FFT-based method suggested by Gérard Bricogne in 1986 
and implemented with a large set of 1D transforms  by Steller et al (1997). An 
alternative formulation using a single 3D transform is used in HKL. XDS uses a 
method based on “difference vectors”, which will not be discussed further here.
The initial cell obtained may not be the “reduced cell”, i.e. with angles closest to 
90º and the shortest cell edges, so “cell reduction” is performed next. At this 
point, the cell has triclinic symmetry; it can be transformed via a set of 
operations (listed in International Tables for Crystallography  Vol. A) to 44 
characteristic lattices (each of which corresponds to one of the 14 Bravais 
Lattices), and a distortion penalty calculated for each lattice. It is important to 
remember that the 44 solutions correspond to the single triclinic lattice obtained 
from indexing.
Having chosen a solution, the user should obtain an estimate of the mosaic 
spread of the crystal, prior to refinement. Mosflm uses an iterative integration 
routine to calculate a starting value.
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• Find spots on the image
• Convert 2D co-ordinates (image) to scattering vectors 

(corresponding to 3D RL co-ordinates)
• Index
• Cell reduction
• Apply Bravais lattice symmetry 
• Pick a putative solution
• (Estimate mosaic spread)

Note that indexing only gives an approximate solution; we 
hope it will be good enough to proceed.

Indexing – overview
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Here, D  is the crystal to detector distance, Xd  and Yd  are the spot co-ordinates 
relative to the beam centre on the image, and r is derived above (usually these 
are all in mm). In this calculation, s  is in dimensionless reciprocal lattice units 
and the radius of the Ewald sphere is unity. The reciprocal lattice obtained is 
somewhat distorted, partly because the beam centre and the crystal to detector 
distance may be incorrect, and the detector may not be planar and truly 
orthogonal to the X-ray beam. The normal procedure is to assume that the phi 
value for each spot is the mid-point of the rotation for this image; plainly, this 
will not be true for spots which appear early in the rotation or for those at the 
end. However, provided that the rotation range for each image is not too great, 
however, the error is acceptably small.
Remember that all the spots that are visible on the image correspond to 
reciprocal lattice points that are on the Ewald sphere at some point during this 
individual exposure.
Note that this relationship only holds when the detector is in the “symmetrical” 
setting, i.e. the two-theta swing angle is zero, and the beam is perpendicular to 
the detector; the two-theta swing can be accommodated by a simple 
modification to this formula, but other variations can be dealt with by a more 
complete description of the detector geometry (this will not be dealt with here). 
The reciprocal lattice produced must also be oriented to reflect the orientation of 
the crystal; this can be done by applying a simple rotation about the origin to 
each of the lattice points calculated 
Even in the simple case presented here (which is a very good approximation to 
the vast majority of actual cases), the importance of knowing the wavelength of 
radiation used, and of determining the beam centre and crystal to detector 
distance accurately is obvious.
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The 2D image co-ordinates of the spots can be 
converted to scattering vectors (that  correspond 
to reciprocal lattice points):

D = crystal to detector distance
Xd, Yd = spot co-ordinates on image relative to 
beam centre

n.b. wavelength, crystal to detector distance and 
beam centre must all be known

s = *D / r−1
X d / r
Y d / r +

r = ) D 2 +X d
2 +Y d

2

Indexing
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Probably the most reliable method for auto-indexing is based on the Fourier 
transform of the calculated reciprocal space co-ordinates of the diffraction spots. 
In the diagram above, the spots recorded on the detector are projected onto a 
representation of the Ewald sphere (since all reciprocal lattice points will only 
give rise to diffraction spots when they are in contact with the Ewald sphere). If 
the scattering vectors (from the origin of the Ewald sphere to the surface of the 
sphere) are projected onto a vector corresponding to a reciprocal lattice axis, the 
projections can be summed to reinforce each other.
For reciprocal lattice planes that have a simple relationship to each other, the 
projected vectors will also have a simple relationship. For example, the vectors 
corresponding to the 1kl, 2kl, 3kl planes will have lengths in the ratio 1:2:3 (see 
next slide). The projections which have more contributing planes will have 
more regularly spaced peaks, and so give rise to Fourier Transforms with peaks 
which are more distinct from the background.
It should be remembered that generally, the crystal will not be aligned with a 
reciprocal space axis parallel to the X-ray beam, so the chance of obtaining the 
above construction is small; by calculating the projections in many directions, 
we increase the chances greatly (to near certainty) that some of these projections 
will correspond to crystal axes.
The projections are actually calculated by computing the scalar (or dot) product 
of the distorted reciprocal lattice points (expressed as vectors from an origin) 
with the vector that describes the direction of the projection, then summing the 
dot products.
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If the scattering vectors 
calculated are projected 
along a reciprocal space axis 
direction (such as a*, b* or 
c*) all the projected vectors 
for spots in the same 
reciprocal space plane will 
have the same length, as will 
all those spots in the next 
plane, etc. 

This will give a large peak in 
the Fourier transform.

One-dimensional FFT Indexing
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For directions other than reciprocal space axes, the projected vectors will have 
different lengths, and will not (in general) give a large peak in the Fourier 
transform. The indexing in Mosflm calculates several hundred projections, 
regularly spaced around a hemisphere of reciprocal space and applies a Fast 
Fourier Transform (FFT) to each. Although in principle, we only need to find 
the 3 FFTs corresponding to the three principal cell axes, they may not all be 
present (e.g. if the crystal orientation does not allow it), or we may find vectors 
corresponding to edges in a non-reduced cell. In practice, 30 FFTs produced 
which have the largest peaks are selected to determine which can be combined 
to give a real space unit cell which accounts for the majority of the reflections.
The unit cell determined is reduced to give a primitive cell in a conventional 
setting, i.e. one which has its three inter-axial angles as close to orthogonal as 
possible and the three axial lengths as short as possible. Cell reduction does not 
change the unit cell volume, unless there is also a change in lattice centring.
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The first large peak in 
the Fourier transform 
corresponds to a real 
space cell edge length. 
In this case, ~67Å.

Provided that a single 
image samples enough 
of reciprocal space, we 
can get information 
about all three crystal 
axes from one image.

FFT Indexing

scattering vectors projected along axis a*

Fourier transform of scattering vectors
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Indexing only gives the geometry of the cell

Indexing gives us a basis solution that is triclinic.

Applying symmetry transformations to give the reduced bases allows 
us to see how well this triclinic solution fits the cell edges and angles 
of lattices with higher symmetry, e.g. monoclinic, orthorhombic etc.

Mosflm and XDS give all 44 solutions: each of these corresponds to 
one of the 14 Bravais lattices (each of which may occur several times 
as a result of different transformations). Denzo and HKL only give the 
“best” 14 Bravais lattice solutions which may not include the correct 
one. DIALS only reports those solutions with a penalty less than some 
threshold value (i.e. the “good ones”).

The unit cell geometry from indexing may not be the correct crystal 
symmetry, but it usually is.

The space group is only a hypothesis until after your structure is 
deposited in the PDB

The cell dimensions derived from autoindexing usually give a good indication of 
the true symmetry of the crystal. For example, in the case that a≠b≠c, α≠γ≠β≠90, 
the crystal system is most probably triclinic, unless the indexing has failed. If 
a=b≠c, α=β=γ=90, the crystal system may be tetragonal, but there are many 
examples where unit cells fit this but the true symmetry is orthorhombic or lower. 
However, probably more than 95% of the time, the crystal symmetry derived 
from the unit cell geometry will be correct. 
The practice of providing all 44 characteristic lattice solutions in Mosflm and 
XDS is to be preferred to that of Denzo/HKL; the latter only gives the “best 
guess”of each characteristic lattice as a choice. A small error in instrument 
parameters, or even in the choice of spots used for indexing, could easily give 
rise to the correct solution not being present in the list of results, even though the 
program has actually calculated it. The DIALS toolbox only reports the solutions 
which have a small penalty, so the list length can vary between samples.
The 44 characteristic lattices and the transformations from the basis triclinic 
solution that correspond to the reduced bases are tabulated in International Tables 
Volume A pp 750 - 755. Each characteristic lattice (or lattice character) is 
associated with a Bravais lattice, e.g. aP is primitive triclinic (“anorthic 
Primitive”), mC is C-centred monoclinic etc.
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Bravais lattice – from intensities

The true Bravais Lattice 
symmetry can only be 
determined by 
analysing the 
intensities of symmetry 
equivalent reflections – 
i.e. after integration.

example of C2221 with a 
= 74.7Å, b = 129.2Å, c 
= 184.3Å, which could 
be (incorrectly) indexed 
as hexagonal a = b = 
74.7Å, c = 184.3Å.

This is an example provided to Phil Evans where the metric symmetry indicated 
that the crystal was hexagonal, but the merging statistics showed that it was C-
centred orthorhombic; the mm symmetry of the diffraction spots projected along 
the c* axis clearly illustrates this.
There are also two incorrect C-centred orthorhombic solutions at 120° to the 
correct solution, with identical cell parameters; again, it can be seen that the 
reflections that should have the same intensity by hexagonal symmetry do not 
match.
It is interesting to note that autoindexing gave variously the hexagonal or one of 
the three orthorhombic solutions, depending on the choice of spots used in 
indexing – or only a one in four chance of the correct answer. Differentiating 
between the four solutions and picking the correct one can only be done after 
integrating at least some images; iMosflm includes a task button in the 
Integration pane that runs Pointless to perform this analysis.
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Refining the parameters (1)

Optimise the fit of observed to predicted spot positions, so 
that the measurement boxes can be placed accurately over 
the spots.

Specifically, improve estimates of:
• Crystal parameters
• Instrument parameters

Accurate cell dimensions are important because they are 
used in all subsequent stages of structure determination, 
refinement and analysis

Can be performed by either (or both):
• Positional refinement using spot co-ordinates
• Post-refinement using intensity measurements

Indexing is based on approximations, and the fit of observed spots to their 
calculated positions can be improved by refinement. These approximations 
include the phi position of the centroid of each reflection and various parameters 
like crystal to detector distance and detector mis-setting angles. Provided that 
there are sufficient usable data at high enough resolution, refinement not only 
gives better information about where on the detector the spots occur, but also 
gives better estimates of both the crystal and instrument parameters.
Most integration programs use a “positional refinement” based on the spot 
positions on the detector surface; this is simple to calculate, but care must be 
taken because several parameters are closely correlated (e.g. cell edges and 
crystal to detector distance), especially at low resolution. 
Mosflm combines positional refinement with another method, which is based on 
the relative intensities of the different parts of partial reflections across several 
images. Because this can only be done after the reflections have been integrated, 
it is called “post-refinement”. Using both methods together has distinct 
advantages over just using positional refinement, e.g. it is possible to de-couple 
the crystal parameter refinement from that of the crystal to detector distance, and 
it also gives (provided there are sufficient reflections for a stable refinement) 
more accurate cell parameters than those available from positional refinement.
Other processing packages delay post-refinement until a step following 
integration, and often combine it into the scaling and merging step.
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Refining the parameters (2)

Positional refinement:

Postrefinement:

,1=∑
i=1

n

wix *X i
calc−X i

obs +2(wiy*Y i
calc−Y i

obs +2

,2=∑
i=1

n

wi [ *Ri
calc−Ri

obs+
d i ]

2

(X, Y)obs and (X,Y)calc are the observed and calculated spot co-ordinates on the 
detector (usually transformed to some virtual detector frame). 
The cell dimensions and crystal to detector distance are strongly correlated, 
particularly at low resolution, and it can be hard to refine both stably at the same 
time. Mosflm avoids this by refining the distance via positional refinement, and 
the cell dimensions via post-refinement.
Reflections that are spread across two or more images are in the process of 
traversing the Ewald sphere. The relative intensities of the parts of a single 
reflection on consecutive images is related closely to how close the reciprocal 
lattice point is to the Ewald sphere. The "rocking curve" describes how the 
intensity of a reflection varies with the crystal orientation. We can use this 
knowledge to get more accurate information on the unit cell and other 
experimental parameters.
Rcalc and Robs are the calculated and observed distances of the phi centroid from 
the Ewald sphere, but may also be thought of as the calculated and observed 
partiality for each reflection.
The radius of convergence of post-refinement is smaller than that for positional 
refinement, so the parameter to be optimised must be closer to its true value for 
the process to be stable and accurate. Post-refinement can routinely give cell 
dimensions that are accurate to within a few parts in 10,000 (e.g. 0.03Å error in a 
cell edge of 100Å). 
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Post-refinement

We can visualise this in the Ewald sphere construction, 
minimising the angular residual δ. A suitable model for the 
rocking curve allows us to determine the “observed” 
position (P'). 

The Ewald sphere is a useful way to visualise the conditions required for 
diffraction. The crystal is at “0”, and the reciprocal lattice origin is at a distance 
1/λ away, on the surface of the Ewald sphere. As the crystal is rotated, the 
reciprocal lattice rotates synchronously with it. A reciprocal lattice point is in the 
diffracting condition when it is on the Ewald sphere surface; with an ideal crystal 
with zero mosaicity and ideally monochromatic radiation, this would happen 
instantaneously (the surface of the Ewald sphere would have zero thickness and 
the reciprocal lattice points would have zero size). In practice, most crystals are 
not perfect, and the reciprocal lattice points have finite size. Also, the Ewald 
sphere surface has a finite thickness. Taken together, these mean that the 
reciprocal lattice points are crossing the Ewald sphere for a finite time so 
diffraction spots are seen through a small rotation range.
Post-refinement minimises the difference between the calculated and observed 
distances of reciprocal lattice points from the Ewald sphere, by minimising the 
angular residual δ. 
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Integration itself

Two basic ways - 

• summation integration

simple, fast, okay for all except weak, overloaded or 
partially overlapping reflections

• profile fitting (only intended to improve weak spots)

can be sub-divided into 
• two-dimensional (2D) – builds up reflections from 

profiles on single images (but we can use spots on 
different images) 

• three-dimensional (3D) – builds up profiles across 
several adjacent images

Integration is performed once the crystal and instrument parameters have been 
optimised by refinement.
The main difference between two-dimensional and three-dimensional integration 
is that the profiles used for partials over several images for 2D integration are the 
same for each part of the reflection, whereas for 3D integration, the profile for 
different parts of the same reflection can change significantly. 
In principle, 3D profile fitting should give better results than 2D, but in practice 
the difference does not seem to be important, and other differences between 
programs (or even parts of the same program) tend to dominate.
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Measuring the intensity of a spot

Identify the 
background & 
spot regions, 
work out 
what the 
background 
level is 
around the 
spot, then 
assume it is 
the same 
under the 
spot.

The first part of integration is to work out where the diffraction spot is, and 
where it ends. The assumption is made that, in the region of the spot, the 
background is planar and may have a slope. The background plane and its slope 
are calculated from pixels in the neighbourhood of the spot, once the spot pixels 
have been determined.
Some programs optimise the spot region, whereas others rely on the user to do 
this. Generally, more modern programs will do this for the user.
It can be seen from this region around a diffraction spot, that although the 
intensity in the background is much lower than in the spot, it is not actually flat 
and level; this is due to a number of reasons (e.g. detector noise), but our concern 
is how best to take this variation into account when determining the background. 
If we take a statistically significant number of pixels, we can get a good estimate 
of the background level. 
Mosflm uses a rectangular mask, which is divided between an octagonal spot 
region and the background region. Before optimisation, the background area is 
chosen to be ~8x the size of the spot region, and then only the spot is optimised. 
If the spot region becomes larger, the overall measurements of the box are 
increased. If the background area drops to less than twice the spot size as a result 
of expansion of the spot region, the process halts and the user is prompted to 
intervene. This very rarely happens except with very large cells (which have 
many spots close together).
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Summation integration

• In the absence of background, just add the pixel counts in 
the spot region together - but there is (always) 
background!

• Need to define spot and background regions - we cannot 
measure background directly under the spots, so we 
calculate a local background plane and slope from nearby 
non-spot pixels

• Use this to subtract the background under the spots

• Weak spots may have their shoulders under the 
background, so that their measurement is impaired.

If the  background intensity is negligible, the program doesn't even need to be 
very accurate in its placement of the integration boxes when using summation 
integration, provided they enclose all the spot intensity.
In practice, however, there is always some background, so this needs to be taken 
into account. It is impossible to measure the background directly under the spot, 
but its intensity can be inferred by assuming it to be a sloping plane in the 
neighbourhood of the spot. If the plane is steeper than some threshold value (e.g. 
because the spot is near an ice-ring), Mosflm will issue a warning. 
With some newer detectors that have very low intrinsic noise levels and small 
point-spread functions, it is probably correct to integrate using summation 
integration (at least for the strong reflections), especially when the background is 
low. However, weak spots will still have their shoulders hidden by the 
background, and summation intensity will not measure their intensity optimally.

Seed skewness – a variant on summation integration

It is possible to analyse the intensity distribution of the background region pixels 
and use this to optimise both the shape and the size of the measurement box for 
each spot individually (by adding and/or subtracting pixels from the initial “seed” 
spot region) – this is done in the process known as “seed-skewness”. This 
improves the spot measurement indirectly by optimising the measurement of the 
background. It is a very computationally expensive process (since it has to be 
performed for every single spot), and so it is slow; none of the commonly used 
integration programs follow this approach.
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Integration by profile fitting

Based on the 
observation* that 
spots corresponding to 
fully recorded 
reflections in the same 
region of the detector 
(and on images nearby 
in phi) have similar 
profiles.

* for detectors with
• a finite point-spread 

function
• small pixels cf spot size

The spot shape on a detector (including its intensity profile) is a function of 
several physical factors – the cross-section and divergence  of the illuminating 
radiation, the size,  shape and mosaic spread of the crystal (and  its orientation 
relative to the beam), the direction the diffracted beams exit from the crystal, 
scatter from air in the beam path, the size and shape of the pixels on the detector, 
etc. 
For a given image (or short series of images) most of these may be assumed to be 
constant in the diffraction experiment (or nearly constant); the biggest change 
between nearby (fully recorded) spots is in the direction of the diffracted rays 
from the crystal, and if the angle between these rays is small, this major 
difference is also small, so the idea that spots close to each other on the detector 
(even on different images)  have similar profiles has some validity. However, if 
the physical spot size (determined by the cross-section of the diffracted rays) is 
similar to the pixel size on the detector, and the detector has a point-spread 
function that is small compared to the pixel size, this may not be true. There are 
other complicating factors which may occur to the reader!
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Profile fitting integration – standard profiles

Use a profile determined empirically from well-measured reflections to 
measure the intensity of weak reflections (whose shoulders disappear 
below the background), by fitting a learnt profile to the observed 
reflection:

 

•  requires accurate (sub-pixel) placement of the profile
•  reduces variance for weak reflections
•  should reduce random error (weak reflections)
•  may increase systematic error (strong reflections)

1      2      3      4     51      2      3      4     5

If the centre of each reflection on the detector is not calculated accurately, the 
profiles calculated using the spots will be broader than the true profile because 
the centres of the measured profiles will not coincide exactly. This can give rise 
to systematic errors that are largest for the strongest reflections, even for 
detectors with relatively large PSFs. Modern programs do locate the centres very 
accurately, so generally this is not a big problem, but it should be borne in mind 
when analysing results; in some circumstances it may be appropriate to use 
summation integration for the strongest reflections and profile fitting for the 
weaker ones. Mosflm records both measurements in the output MTZ reflection 
file, and Scala or Aimless can perform the appropriate combination.
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Questions about the data 

● What is the overall quality of the dataset? 
● How does it compare to other datasets for this project?

● What is the real resolution? 
● Should you cut the high-resolution data?

● Are there bad batches
● individual duff batches or ranges of batches?
● Is the whole dataset bad? 
● Should it just be thrown away? 

● Was the radiation damage such that you should exclude 
the later parts?
● Is the outlier detection working well?
● Is there any apparent anomalous signal?
● Are the data twinned?

Once we have decided that the fast scaling and merging (e.g. provided by the 
QuickScale option in iMosflm) have proceeded without too much incident, we 
can start to look at the output more closely to make sure that the dataset itself is 
of sufficient quality to proceed. As with integration, if serious problems are 
encountered, it is always worth asking if it is worthwhile struggling to use a bad 
dataset (and get the best out of it), or if it should be discarded and a new dataset 
collected on a new crystal.
A further question is “are the data any good for the experiment we want to 
perform?”, e.g. we don't need atomic resolution data for a SAD experiment, and 
we don't need an anomalous signal for refinement. Therefore, concentrate on 
those diagnostics that are relevant. 
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Scaling and merging

This is the next step following integration. It is important 
because - 
• It attempts to put all observations on a common scale 

(which is necessary for subsequent structural analysis)
• It provides the main diagnostics of data quality (CC½, 

I/σ(I), resolution, etc.) and indicates whether the data 
collection and data integration were satisfactory

Because of this diagnostic role, it is important that the data 
are scaled as soon as possible after data collection – it is best 
to do it during data collection, preferably while the crystal is 
still on the camera.
• Do not leave integration and scaling until you get home 

after a synchrotron visit!

Scaling and merging follows integration and together provide the main 
diagnostics concerning the quality of the data collection and the data processing.
Scaling attempts to put the observations onto a common scale, allowing for 
variations which have occurred in both the sample and the instrument used for 
data collection (the “camera”, which comprises the detector and other 
diffractometer components like shutter, goniostat, X-ray source, etc). 
The term “merging” covers two quite different processes, i.e. 
(1) merging together of the parts of reflections that are partially recorded over 
multiple images to form complete observations and
(2) merging together symmetry-related copies of these complete observations 
into single measurements. 
For some purposes, the second of these two steps is performed outside the 
normal scaling and merging procedure, for example programs like the SHELX 
suite that use their own internal merging tests on “unmerged data”. 
In the process of scaling and merging, all the normal quality criteria such as the 
various merging R values and correlation coefficients are calculated, and for this 
reason it is important to perform this step as soon as possible after the data 
collection is finished - preferably while the crystal is still mounted on the camera, 
so that better and/or more data can be collected if necessary. 
On a synchrotron visit, process all your data while you are at the beamline! It is 
always possible to re-process again later if necessary, but this first processing 
gives confidence in the quality of the experiment.
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Scaling

We try to make symmetry related and duplicate 
measurements of a reflection equal by modelling the 
diffraction experiment, principally as a function of the 
incident and the diffracted beam directions in the crystal.
 
Scaling attempts to make the data internally consistent, 
by minimising the differences between the individual 
observations I and the weighted mean of all the 
symmetry-related equivalents of reflection I.

Provided that there has been no radiation damage to the sample, all reflections 
related by the space group symmetry should have equal intensities (and hence 
structure factor amplitudes). However, because we live in the real world where 
our sample and instruments are not perfect, this will not be true. Therefore, we 
have to try to model the likely causes of the differences and apply appropriate 
corrections to individual measurements. 
In the absence of other information, we can only try to make the make internally 
consistent, i.e. try to make symmetry equivalent data agree. Scaling does not 
attempt to scale non-symmetry related data, so any systematic errors which are 
the same for symmetry-related data will remain.
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Why are reflections on different scales?

Some physical factors vary during the experiment, including those 
associated with 

(1)  the incident beam and the camera

(2)  the crystal and the diffracted beam

(3)  the detector

Scaling should model the parameters contributing to each of these 
groups appropriately; since experiments differ, each experiment 
may require a different model

Understanding the effect of these factors allows a sensible design of 
correction and an understanding of what can go wrong

Various physical factors lead to observed intensities being on different scales. 
Some corrections are known at the time of data integration because these are 
related to the instrument, the X-ray source and the method of data collection (e.g. 
Lorentz and polarisation corrections), but others can only be determined 
subsequently. Careful analysis of the variations in intensity differences allows the 
effects of the different factors to be modelled sensibly in scaling.
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(1) Factors related to the incident beam and the 
camera

(a) Variable beam intensity

(b) Changes in the illuminated volume of the crystal

(c) Absorption of the primary (incident) beam by the crystal 
(indistinguishable from (b))

(d) Variations in rotation speed and shutter synchronisation. 
Shutter synchronisation errors lead to partial bias which 
may be positive, unlike the usual negative bias.

“Shutterless” data collection (e.g. with Pilatus detector) avoids 
synchronisation errors (d), but very small rotation angles can 
still cause problems with variations in rotation speed.

Exposures that are long compared to variations in intensity tend to reduce this 
problem, but very short exposures can cause a large variation in scales between 
adjacent images.
If the crystal is smaller than the beam and correctly centred, the illuminated 
volume will remain constant as the crystal rotates, but if it is larger than beam or 
if it moves in and out of the beam while rotating, the total diffracting volume will 
change, and consequently so will the scales for the images.
If the crystal absorbs X-rays heavily (e.g. because it contains a heavy atom) and 
it is not isometric, then more X-rays will be absorbed in some orientations 
compared with others before they diffract.
The shutter needs to completely open and close precisely at the correct rotation 
angles; errors associated with poor shutter synchronisation can lead to positive 
partial bias, i.e. the intensities of summed partials is greater than expected 
compared with the symmetry equivalent fully recorded reflections.



  

 

Absorption in the secondary beam is more evident with long wavelength 
radiation e.g. (CuKα- 1.54Å), and can be noticeable when second row main 
group elements (e.g. S, P, Br) are present. The presence of heavier elements 
exacerbates the problem. Shorter wavelength X-rays (say, 1Å or less) are not 
absorbed as badly.
Radiation damage is a real problem with high brilliance sources, and is not easily 
correctable since the structure of the molecule being studied is actually changing 
(typically, CO2 is lost from acidic amino acids and S from methionine, cystine 
and cysteine). The best way of dealing with this is to avoid it by using low doses 
of X-rays and collecting data quickly before significant damage has occurred.
If the relative B-factor drops significantly during the course of the data 
collection, it is a strong indication that radiation damage has occurred, as is a 
strong increase in the “Rcp vs batch” plot. Rcp is the “cumulative pairwise 
residual” which measures the overall merging R value of the data from the start 
of the dataset up to the current batch.
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(2) Factors related to the crystal and the diffracted 
beam

(a) Absorption in the secondary (diffracted) beam – 
serious at long wavelength, e.g. CuKα on a home 
source

(b) radiation damage – serious on high brilliance sources. 
Not easily correctable unless small, as the structure is 
changing

Maybe extrapolate back to zero time? (but this needs high 
multiplicity)

The relative B-factor is largely a correction for the average 
radiation damage 
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(3) Factors related to the detector

The detector should be calibrated properly for spatial 
distortion and sensitivity of response, and should be 
stable. If this is not true, problems are difficult to detect 
from the diffraction data.

(a) e.g. there are known problems in the corners of 
detector modules, both CCDs and Pilatus (some programs 
correct for these)

(b) Calibration should flag defective pixels (“hot” or 
“cold”), and also dead (or otherwise unreliable) regions 
between modules.

(c) The user should tell the integration program about 
shadows from the beamstop, cryocooler or other 
shadows.

Most modern commercial detectors write images which are corrected for spatial 
distortion and for non-uniformity of response; Bruker CCD detectors are the only 
widely installed devices that do not write distortion corrected images by default. 
Other (minor) problems exist with “tiled” detectors, i.e. those made several 
individual modules arranged in a mosaic. Both CCD and individual PAD chips 
are less sensitive in the corners; this can be corrected in the scaling stage if the 
Essentially all electronic detectors have a few bad pixels that consistently give 
readings that are too high or too low (or are “dead”, reading 0); these can be 
located by the manufacturer, and a bad pixel map supplied to the customer. 
During use, more pixels may become damaged, so it may be worthwhile re-
calibrating occasionally.
Integration programs do not care if predicted diffraction spots are masked by 
physical objects, but the scaling programs cannot be expected to  scale properly 
recorded reflections with symmetry equivalents that are obscured (and therefore 
integrated incorrectly).
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Finally 

 Remember - 
• Don't expect software to correct for a badly performed 

experiment

• Take the time to look at your images and the results of 
integration and scaling

• Scaling and merging provide the best statistics on the 
quality of your data 
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