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Outline



 neutral
 spin ½
 particle/wave

mv

h


de Broglie formula

Planck constant

mass = 1.675*10-24g

velocity
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It is a subatomic particle discovered by J. Chadwick in 1932

The neutron



Because of the wave – particle duality

𝐸 =
ℎ2

2𝑚𝜆2

X-rays 𝐸 = ℎ𝜈 =
ℎ𝑐

𝜆
⇒ 𝜆 Å . 𝐸 keV = 12.04

Being classical particles, the kinetic energy of neutrons is given by

𝐸 = 𝑘𝐵𝑇 =
1

2
𝑚𝑣2

𝑘 =
2𝜋

𝜆
(𝜆: wavelength)

But a monochromatic beam of neutrons can also be considered as plane 
waves with wave vector:

mv

h


hence 𝜆 Å 𝐸 meV = 9.05thus 1 Å   ↔ 80 meV

1 Å   ↔ 12 keV 4

Neutron properties



 𝝀 ∼ 𝟎. 𝟒 − 𝟑𝟎 Å ∼ molecular sizes and interatomic distances in 
condensed matter
Neutrons are well adapted to be diffracted by the atoms of matter

 𝐸 ∼ 0.1 − 500 meV ∼ excitations (phonons, magnons, …) in condensed 
matter

Neutrons are well adapted for spectroscopy studies of excitations

X-rays : 𝐸 ∼ 0.4 − 40 keV  ∼ ionization energies of the inner electronic 
shells

 X-rays not so well adapted (visible & infrared light better suited)

X-rays : same
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Neutron properties



Nuclear interaction
(neutron-nucleus)

Magnetic interaction
Neutron spin – unpaired electron spin

Electromagnetic interaction 
(photons-electrons) 

absorption

X-rays

neutrons

nucleus

electrons

su
rf

ac
e
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Interactions with matter



For most of the elements neutrons are weakly absorbed at the working wavelength
(𝜎𝑎 ∼1 barn at 𝜆 = 1.8 Å)

“Pathological” elements

but a few isotopes strongly absorb neutrons: 3He, 6Li, 10B, 113Cd, 155Gd and 
157Gd, 149Sm… 

Neutrons :  𝜇 = 0.01 – 1 cm-1 → 1 – 100 cm of matter to attenuate the beam by e
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With regards to absorption...

𝝈𝒂 ∶ [surface], given in barn (1 barn = 10-24 cm2)
depends on 𝜆, 𝑍 (chemical specie) and 𝐴 (isotope)

X-rays : 𝜇 ∝ 𝑍 (absorbed by electrons)
𝜇 = 100 – 1000 cm-1  10 – 100 μm of matter to attenuate the beam by e

𝐼

𝐼0
= 𝑒−𝜎𝑎𝑁𝑥 (𝜎𝑎 =

µ

N
)

Absorption cross 
section

Ex : substitution of natural Gd by 160Gd in a neutron study of the frustrated magnet Gd3Ga5O12

to avoid strong absorption

Interactions with matter



Beam source 
Planar wave

Spherical wave
diffused by atom O :

zik

i
ie rikfi

f
fe

r

kkf ),(


Interferences between the 
spherical waves coming from
an array of atoms generate a 
diffraction pattern

source

detector

Characterizes the 
beam/matter interaction
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Basic principles of diffraction



If one considers a perfect crystal, periodic in the 3 dimensions:

Position of atom j in the cell m: 

integers

unit cell vectors

321 ,, lll

j

O

cell m
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𝑅𝑚𝑗 = 𝑅𝑗 = റ𝑟𝑗 + 𝑅𝑚
0

𝑅𝑗 = റ𝑟𝑗 + 𝑙1 റ𝑎 + 𝑙2𝑏 + 𝑙3 റ𝑐

റ𝑎, 𝑏, റ𝑐

റ𝑟𝑗𝑅𝑚
0

Basic principles of diffraction



Scattering by a crystal

The detector is set at M, in the diffusion plane, at a distance R (R >> Rj) 
from the origin O

Incident beam, unit wave vector

Diffracted beam, unit wave vector

qqIncident beam Transmitted beam

Diffracted beam

O

O’

q

q

A

B

To arrive at M, the wave 
originating in O has travelled 
the distance R, the one 
originating in O’ has travelled  
R+AO’+O’B
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𝑘𝑖

𝑘𝑓

𝑘𝑓

𝑘𝑖

𝑘𝑖 − 𝑘𝑓 = 2 sin 𝜃

𝐴𝑂′ = −𝑅𝑗 ∙ 𝑘𝑖
𝐵𝑂′ = −𝑅𝑗 ∙ 𝑘𝑓

𝑅𝑗



Summing on all the crystal atomic positions, one gets the differential
cross section (elastic process), which is proportional to the square of 
the diffracted wave modulus : 

with

scattering vector
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𝑄 =
4𝜋 sin 𝜃

𝜆

2𝜋

𝜆
𝑘𝑖 − 𝑘𝑓 = 𝑄

𝜕𝜎

𝜕Ω

𝑒𝑙

= ෍

𝑅𝑗

𝑏𝑗𝑒
𝑖(𝑄∙𝑅𝑗)

2
Number of neutrons 
scattered per second in 
solid angle 𝑑Ω around 

the direction 𝑘𝑓 with 
any energy, normalized 
to the incident neutron 
flux 𝜙

Scattering by a crystal



Structure factor

Sum over N atoms in the cell
Depends on the atomic positions within the 

unit cell

Sum over all the cells
Depends on the crystal periodicity
Non-zero when Q is a vector of the 

reciprocal space

Crystal form factorF(Q)
C(Q)

Elastic scattering differential cross section

22
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
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𝜕𝜎

𝜕Ω

é𝑙

= ෍

𝑗

𝑏𝑗 𝑒
𝑖𝑄∙ റ𝑟𝑗 𝑒−𝑊𝑗

2

෍

𝑙1,𝑙2,𝑙3

𝑐𝑟𝑖𝑠𝑡𝑎𝑙

𝑒𝑖𝑄∙ 𝑙1𝑎+𝑙2𝑏+𝑙3 റ𝑐
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Scattering by a crystal



The amplitude of the diffracted wave is proportionnal to

bj : defines the scattering by atom j ;     defines its position in the 
unit cell ; N is the number of atoms in the cell
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റ𝑟𝑗

𝐹(𝑄) =෍

𝑗=1

𝑁

𝑏𝑗𝑒
𝑖(𝑄∙ റ𝑟𝑗)

Structure factor 



Atom = point scatterer

In this case, the scattering amplitude does not depend on the 
diffusion angle : this is the case of the nuclear diffraction of neutrons







N

j

lzkyhxi

j
jjjebhklF

1

)(2
)(



bj : scattering length of atom j (or fermi length, in fm (10-13 cm))
It describes the neutron-nucleus interaction 

b varies in a non-monotonous  way with the atomic number Z. 
Isotopes can have very different b’s!

Neutrons can distinguish atoms with similar Z numbers (≠ RX) ; can
locate light atoms in a structure with heavy elements. They are also

sensitive to H/D.
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Neutrons are a privileged tool for the study of organic compounds

Point scatterer



H

D

Li

Be

N

B

O

Na

Mg

S

Cl

Ar

Sc

Ti

Cr

Mn

Fe

Co

Ni

Zn

Ge

etc…

Neutron scattering lengths (Z < 35)
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Atomic scatterer

Atom = scattering object, size ~ , group of identical point scatterers
Case of X-rays (electrons) and of neutron magnetic diffraction (unpaired
electrons)

)(Qfbb jcj 

constant depends on the diffusion q
atomic scattering factor

X-rays :













qsin
)( 0fHf j Anomal diffusion terms
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Q



0)(

)0(

0

0





qf

Zqf

The scattered intensity decreases at large angles.
≠ neutrons!! With neutrons it is possible to determine atomic
positions and thermal displacement factors precisely.  
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Neutrons – 3T2@LLB

Synchrotron – BM1@ESRF

Example : Méthyl-4-pyridine-1-oxyde à 10K
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Thermal displacement : oscillating motion of atoms around their equilibrium
position
This displacement decreases scattering, and has a larger effect when :

• T is large
• atoms are light
• large



qsin

Displacement : atomic plane with a thickness
2u

dhkl
dhkl

2u becomes important compared with dhklq large 

small q
large q

Thermal displacement parameter
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2

2sin

)()( 

q
B

T ehklFhklF




(oversimplified correction)

Identical effects in neutrons and X-rays
It leads to a decrease of the scattered intensity at large angles 

(NOT to a broadening)

228 uB 

Isotropic temperature factor B

inorganic compounds :~ 0.2 Å2- 3.2 Å2

organic compounds :~ 20 Å2

2u
inorganic compounds : ~ 0.05 Å - 0.2 Å 
organic compounds : ~ 0.5 Å 

Anisotropic matrices can be introduced in complex cases 20



280K

Example : Tert-butanol

10K

Neutrons – 3T2 (LLB)

280K

10K

21



a

bb

a

250K 100K

139K

2nd order

91K

1st order

Phase transitions in 4MPO

?

C5H4NO(CH3)

C5D4NO(CD3)

Methyl group CH3

Planar molecule

« symmetric »

H

N

O

C

Example of X-ray/neutrons complementarity
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Complex data, large cell, 

peak overlaps…

4MPO at 10 K 

Neutrons – 3T2 (LLB)

23

Example of X-ray/neutrons complementarity



BM1 – ESRF SNBL

10K

To solve the crystal structure at 10 K : synchrotron X-ray diffraction experiment
at 10 K (cell parameters, space group, position of molecules (without D atoms)

24

24

Example of X-ray/neutrons complementarity



10 K
P41, tetragonal
a = b = 15.410 Å
c = 19.680 Å

RBragg = 4.05 ; c2 = 5.55

Neutron data analysis

3T2@LLB
25

Example of X-ray/neutrons complementarity
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Remember, the neutron has a spin 1/2

Magnetic diffraction
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Web of Science: Magnetic structure(s)

Multiferroics
Magnetoelectrics

Superconducteurs

Nanoparticles

Magnetoresistance
Heavy fermions

Skyrmions

Orbital orders

Magnetic thin films



Paramagnetic state

Atoms can carry a magnetic moment, as for instance 3d elements with unpaired
electrons (Mn…), but also 4d elements (Mo…), 4f (rare-earths comme Nd, Dy,…) etc…

Jij

Ordered state T<TC,TN

Magnetic Moment 

Moments can order below an order temperature, called TC ou TN

28Thermal fluctuations dominate over
exchange interactions, magnetic

moments are fluctuating

Exchange interactions dominate over 
thermal fluctuations, magnetic

moments are ordered

Ԧ𝑆𝑗 = 0 Ԧ𝑆𝑗 ≠ 0



More often than not, magnetic structures can be complex, because of 
competing interactions, magnetic anisotropy, etc…

Ferromagnet
Collinear antiferromagnet

Simple cases

Temperature (K)

TC

M
 (

µ
B
)

TN

M
 (

µ
B
)

Temperature (K)
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Example of a complex magnetic structure MnSbS2Cl

Incommensurate magnetic structure, 
with two possible models: helicoidal or 

modulated sinusoidal

C. Doussier et al., J. Solid State Chem. 179 (2006), 486

Mn

Sb

S
Cl

30



Magnetic scattering is taken into account using the formula

(Isotropic) nuclear term

Interaction between neutron spin s and 

nucleus spin I Dipolar interaction between

neutron spin neutron s and atom

magnetic moment 

Diffraction by an ordered magnetic structure

This depends

on the spin 

state of the 

neutron and of 

the nuclei!
n I n I
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𝑏𝑛 + 2𝐵റ𝐼 ∙ റ𝑆 +
1

2
𝛾𝑟𝑒𝑓𝑚(𝑄)(𝑀⊥ ∙ റ𝑆)



where

Magnetic form factor
Fourier transform of the density of the 

unpaired electrons of the atom

Projection of the magnetic
moment of the atom on a 
plane perpendicular to the 

scattering vector Q

(can be pictured as the spatial extension of 
the electron cloud) 

Cst = 0.27·10-12 cm

How can we understand the fact that it is M

which is important, and not M… 32

1

2
𝛾𝑟𝑒𝑓𝑚(𝑄)(𝑀⊥ ∙ റ𝑆)

𝑄

𝑀
𝑘𝑖

𝑘𝑓

If 𝑀 ∥ 𝑄: no magnetic 
intensity

If 𝑀 ⊥ 𝑄: maximum magnetic 
intensity

𝑀



One can decompose M into two components M//Q et MQ

M//

Same

phase 

planes

M

Neutrons can feel the magnetic field created by M. For M// the magnetic field

are opposite and the sum is zero.

In a diffusion process, it is the planes which are perpendicular to Q 
which will contribute to the scattered amplitude, as they are in phase.
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Qσ Ԧ𝜇𝑗 = 0

σ Ԧ𝜇𝑗 ∥ 𝑀



Magnetic structure = long-range ordering of “magnetic moments”

 magnetic motif (inside the crystallographic unit cell) + propagation 
vector 𝑘
 Bragg peaks at 𝑄 = 𝐻 ± 𝑘

Ԧ𝜇𝑛

𝑚𝑗

& Dipolar interaction 
( Ԧ𝜇𝑛 , 𝑚𝑗)

𝑘𝑓

Nuclear interactionn

𝑘𝑖

Crystallographic structure = long-range (periodic) ordering of atoms:

𝑄 = 𝑘𝑓 − 𝑘𝑖: scattering vector

𝐻: vector of the reciprocal lattice

 unit cell + space group + atomic 
positions of the asymmetric unit 
 Bragg peaks at 𝑄 = 𝐻

34

𝐹(𝐻) =෍

𝑗=1

𝑁

𝑏𝑗𝑒
2𝑖𝜋(𝐻∙ റ𝑟𝑗)

𝐹𝑀(𝐻 + 𝑘) =
1

2
𝛾𝑟𝑒෍

𝑗=1

𝑁

𝑓𝑗(𝐻 + 𝑘)𝑆𝐤𝑗𝑒
2𝑖𝜋((𝐻+𝑘)∙ റ𝑟𝑗)



For a non polarised neutron beam, the total intensity will be the proportionnal to the 
sum of the nuclear and magnetic intensities

)()()( hklIhklIhklI MN 

Nuclear and magnetic scattering cross sections for elastic
scatterings are in general of the same order of magnitude

G4.1@LLB

Ackowledgements J.M. Mignot, LLB

Paramagnetic state Antiferromagnetic state
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How to describe a periodic magnetic order

Similarly to what was shown previously

j

O

cell m

mmj

k : propagation vector of the magnetic structure (vector of the reciprocal space), 
shows the periodicity and the direction of the propagation 
Skj : complex vector (Fourier component) describing the magnetic moment 
associated to each magnetic atom j for a given k vector

*

kk jj SS 
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𝑅𝑚𝑗 = റ𝑟𝑗 + 𝑅𝑚
0

𝑅𝑚
0

റ𝑟𝑗

𝑚𝑚𝑗 =෍

𝐤

𝑆𝐤𝑗𝑒
−2𝜋𝐤∙𝑅𝑚

0



Magnetic periodicty = crystal
periodicity

Ferromagnetic

k = (0 0 0) (𝑘 = 0)

a

b

Doubling of the cell along a

Examples

Commensurate propagation vector k = (0.5 0 0) 

(𝑘 =
1

2
𝑎∗ )

(several magnetic atoms
in the unit cell)
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Antiferromagnetic

𝑚𝑚 = Ԧ𝑆𝑘 = 𝑚0

𝑚𝑚𝑗 =෍

𝐤

𝑆𝐤𝑗𝑒
−2𝜋𝐤∙𝑅𝑚



In cell 𝑚 = 0 at 𝑅0 = 0 𝑙𝑎 = 𝑙𝑏 = 𝑙𝑐 = 0 ⇒ 𝑚0 =+ Ԧ𝑆𝑘
In cell 𝑚 = 1 at 𝑅1 = Ԧ𝑎 𝑙𝑎 = 1, 𝑙𝑏 = 𝑙𝑐 = 0 ⇒ 𝑚1 =− Ԧ𝑆𝑘 = −𝑚0

In cell 𝑚 = 2 at 𝑅2 = 2 Ԧ𝑎 𝑙𝑎 = 2, 𝑙𝑏 = 𝑙𝑐 = 0 ⇒ 𝑚2 = + Ԧ𝑆𝑘 = +𝑚0

…

In a cell 𝑚 located at 𝑅𝑙 = 𝑙𝑎 Ԧ𝑎 + 𝑙𝑏𝑏 + 𝑙𝑐 Ԧ𝑐

𝑚𝑚 = Ԧ𝑆𝑘𝑒
−𝑖𝜋𝑙𝑎 = −1 𝑙𝑎 Ԧ𝑆𝑘

Ԧ𝑎. Ԧ𝑎⋆ = 1

𝑏. Ԧ𝑎⋆ = Ԧ𝑐. Ԧ𝑎⋆ = 0

Reminder 
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𝑚𝑚𝑗 =෍

𝐤

𝑆𝐤𝑗𝑒
−2𝜋𝐤∙𝑅𝑚

a

b

Doubling of the cell
along a : magnetic
periodicity is twice

the crystal cell
periodicity

k = (0.5 0 0) 

(𝑘 =
1

2
𝑎∗ )

a

Examples



))k(2cos( k

0

jmjmj Rum  

Sine wave order (amplitude modulated)

Propagation vectors can be incommensurate too!

))k(2sin())k(2cos( k

0

k

0

jmjjmjmj RvRum  

Circular helix Elliptic helix
39

Examples



In practice, determining a magnetic structure can be tricky :

- large number of parameters (up to 6 coefficients and one phase 
shift per magnetic atom and per k)

- few observations, especially in powders
- magnetic form factor 

In fact, tools are available to make the task easier: we can simplify the 
analysis of systems that possess a degree of symmetry, by 
distinguishing the configurations that are possible given the known 
symmetry operations.

Possibility of using a polarized neutron beam in the most difficult cases

How to determine a magnetic structure

40
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• Based on irreducible representations and basis 
vectors, use of group theory, propagation vector
formalism

Advantage : any magnetic structure can be described
Drawback : not very easy for beginners

• Magnetic crystallography and magnetic space groups 
(Shubnikov groups)

Drawback : superspace groups for incommensurate magnetic orders are still
being developped
Advantage : easier for beginners

Description of a magnetic structure
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A bit of magnetic crystallography?
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A little reminder first : the difference
between a polar vector and an axial 
vector (= spin)
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m

2

+

- +

-

Vecteur polaire Vecteur axial

+

-

+

-

+ -

+-

+

-

+

-

+ - +-

Inversion

spatiale

Axe 2

Miroir m

(dipôle électrique) (moment magnétique)
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« We do not add but substract symmetry

operations »

In magnetic crystallography, the lost symmetry operation, 
which is always present in non magnetic structures but 
absent in magnetically ordered ones is TIME INVERSION 

(or time reversal).

« The lost symmetry operation »
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Time reversal

This new symmetry operator, time reversal, is

written {1’|0 0 0}

(Spin : current loop)

Axial vector

1’
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{1’|0 0 0} does not modify atomic positions, 

but changes the direction (sign) of the 

magnetic moment

{1’|0 0 0} alone cannot be a symmetry

operation in a magnetic structure

…all non magnetic structures are time reversal 

symmetric (but no one cares!)

Time reversal
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m

Mirror m

With the addition of time reversal, one gets new symmety elements, 
combining a symmetry operator and 1’ 

m'

Mirror m’

Magnetic point groups

During a magnetic phase transition, some symmetry operators can
become prime, or disappear alltogether
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If you remember, there are 32 point groups in classical crystallography

Adding 1’ , one generates 122 magnetic point groups

32 colorless (without 1’)

32 grey (paramagnetic)

58 « black and white »

1 m 1’ m'

Magnetic point groups
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x, y, z +1 (1)

x, y, z -1 (1’)

-x, -y, z +1 (2)

-x, -y, z -1 (2’)

x, y, -z +1 (m)

x, y, -z -1 (m’)

-x, -y, -z +1 (-1)

-x, -y, -z -1 (-1’)

Example with 2/m

x, y, z +1 (1)

-x, -y, z +1 (2)

x, y, -z    +1 (m)

-x, -y, -z +1 (-1)

x, y, z +1 (1)

-x, -y, z -1 (2’)

x, y, -z +1 (m)

-x, -y, -z -1 (-1’)

x, y, z +1 (1)

-x, -y, z -1 (2’)

x, y, -z -1 (m’)

-x, -y, -z +1 (-1)

x, y, z +1 (1)

-x, -y, z +1 (2)

x, y, -z -1 (m’)

-x, -y, -z -1 (-1’)

+/-

+/-

+/-

+/-

+/-

/

+/

/-

+/

+/

2/m

colorless

2/m grey

2’/m 2’/m’ 2/m’

Ferromagnetic if moments 

are in the mirror plane

Magnetic point groups
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Magnetic point groups, prediction of physical
properties

Knowledge of the magnetic point group can be useful to access the 
tensors of various macroscopic properties, such as the linear 
magnetoelectric effect, electrical polarization...

Ex : ferromagnetoeletrics (ferromagnism+electric polarization)
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230 crystallographic
space groups from
Ia-3d to P1

1651 magnetic space
groups (Shubnikov), 
1191 of them compatible 
with a magnetic order

LaMnO3

Pb’n’m

Special position 4b (1/2 0 0)
Point group symmetry 1 

Magnetic space groups

Magnetic space groups can be used in FullProf
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Magnetic space groups
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To take into account time reversal  : 

Pnma.1’ = Pnma + {1’|0 0 0} x Pnma

x, y, z, +1 { 1 | 0 0 0 }

-x+1/2, -y, z+1/2, +1 { 2001 | 1/2 0 1/2 }

-x, y+1/2, -z ,+1 { 2010 | 0 1/2 0 }

x+1/2, -y+1/2, -z+1/2, 

+1 

{ 2100 | 1/2 1/2 1/2 }

-x, -y, -z , +1 { -1 | 0 0 0 }

x+1/2, y, -z+1/2, +1 { m001 | 1/2 0 1/2 }

x, -y+1/2, z, +1 { m010 | 0 1/2 0 }

-x+1/2, y+1/2, z+1/2, +1 { m100 | 1/2 1/2 1/2 }

x, y, z, -1 { 1' | 0 0 0 }

x+1/2, -y+1/2, -z+1/2, -

1

{ 2'100 | 1/2 1/2 1/2 }

-x, y+1/2, -z, -1 { 2'010 | 0 1/2 0 }

-x+1/2, -y, z+1/2, 

-1

{ 2'001 | 1/2 0 1/2 }

-x, -y, -z, -1 { -1' | 0 0 0}

-x+1/2, y+1/2, z+1/2, -1 { m'100 | 1/2 1/2 1/2 }

x, -y+1/2, z, -1 { m'010 | 0 1/2 0 }

x+1/2, y, -z+1/2, -1 { m'001 | 1/2 0 1/2 }

There are now 16 operations instead of eight

Pnma symmetry operators are 

multiplied by {1’|0 0 0}
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Magnetic structures only have symmetry operators where
{1’|0 0 0} is combined with another operator (or is not 
present)

For example

A translation : {1’|t} = {1’|0 0 0}{1|t}

A mirror {m’|t} = {1’|0 0 0}{m|t}

A rotation  {2’|t} = {1’|0 0 0}{2|t}

etc…

Pnma.1’ is not compatible with magnetic order as it contains
the operator {1’|0 0 0} on its own
It is a grey group, which corresponds to the symmetry of the 
paramagnetic state
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x, y, z, -1 { 1' | 0 0 0}

x+1/2, -y+1/2, -z+1/2, 

-1

{ 2'100 | 1/2 1/2 1/2 }

-x, y+1/2, -z, -1 { 2'010 | 0 1/2 0 }

-x+1/2, -y, z+1/2, 

-1

{ 2'001 | 1/2 0 1/2 }

-x, -y, -z, -1 { -1' | 0 0 0}

-x+1/2, y+1/2, z+1/2, -1 { m'100 | 1/2 1/2 1/2 }

x, -y+1/2, z, -1 { m'010 | 0 1/2 0 }

x+1/2, y, -z+1/2, -1 { m'001 | 1/2 0 1/2 }

To build a space group allowing magnetic order

Pnma1’             Pn’ma’
Sous-groupe d’index 2

x, y, z, +1 { 1 | 0 0 0 }

-x+1/2, -y, z+1/2, +1 { 2001 | 1/2 0 1/2 }

-x, y+1/2, -z ,+1 { 2010 | 0 1/2 0 }

x+1/2, -y+1/2, -z+1/2, 

+1 

{ 2100 | 1/2 1/2 1/2 }

-x, -y, -z , +1 { -1 | 0 0 0 }

x+1/2, y, -z+1/2, +1 { m001 | 1/2 0 1/2 }

x, -y+1/2, z, +1 { m010 | 0 1/2 0 }

-x+1/2, y+1/2, z+1/2, +1 { m100 | 1/2 1/2 1/2 }
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Group/Subgroup relationships obtained with k-
subgroupmag.

In this example, k = 0, maximal space groups

Fortunately this can be computed!

62.441

To visit!  BCS : https://www.cryst.ehu.es/
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Not to forget

To report a magnetic structure properly, use a .mcif file
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Take-home messages



… study crystal structures, locate light atoms, 
determine thermal parameters
…study phase transitions vs. T, P, H, …
…perform in situ, or cinetic studies
…study microstructures (stress, contraints, …)
…study magnetic ordrers, get spin density maps
…carry out quantitive analysis (H)
…
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With neutron diffraction you can…



 bulk
 light elements
 contrast (H/D)
 magnetic structures

 low flux, bigger samples
 low resolution
 some absorption issues 
(Gd, B, Cd…)

 (very) high flux,  
small samples
 (very) high resolution
 surfaces

 weak scattering for 
light elements
 sample damage
 surfaces!

Neutrons RX/Synchrotron
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Advantages/Drawbacks



Thank you for your attention!
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