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The neutron

It is a subatomic particle discovered by J. Chadwick in 1932

Planck constant

" neutral ya
= spin % h
=" particle/wave N =—
mv\ velocity

mass = 1.675*10%4g

de Broglie formula



Neutron properties

Being , the kinetic energy of neutrons is given by

1
E =kgT = Emvz

But a monochromatic beam of neutrons can also be considered as

with wave vector: 2T

P (A: wavelength)

k

Because of the wave —particle duality A =—
mv

2
hence 15:2"7 thus A(A)J/E(meV) =9.05 1A o 80meV
m

X-rays E=hv== = A(A).E(keV) = 12.04
1A & 12keV



Neutron propert’ues

e A~0.4—-30A ~ molecular sizes and interatomic distances in
condensed matter

Neutrons are well adapted to be by the atoms of matter

X-rays : same

e [ ~0.1—-500meV ~ excitations (phonons, magnons, ...) in condensed
matter

Neutrons are well adapted for of excitations

X-rays: E ~ 0.4 — 40 keV ~ ionization energies of the inner electronic
shells

=> X-rays not so well adapted (visible & infrared light better suited)



Interactions with watter
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Interactions with waatter

With regards to absorption...

o, : [surface], given in barn (1 barn = 1024 cm?) Absorption cross
depends on A, Z (chemical specie) and A (isotope) section
For most of the elements neutrons are at the working wavelength
(6, ~1 barnat A =1.8A)
[ —o,Nx U
. (0a =)

Neutrons: 4 =0.01 —1cm™? = 1-100 cm of matter to attenuate the beam by e

X-rays: u « Z (absorbed by electrons)
@ =100-1000cm™* — 10 — 100 um of matter to attenuate the beam by e

“Pathological” elements

but a few isotopes strongly absorb neutrons: 3He, 6Li, 198, 113Cd, >>Gd and

157Gd, 149Sm...

Ex : substitution of natural Gd by 1¢°Gd in a neutron study of the frustrated magnet Gd;GasO;,
to avoid strong absorption



Basic principles of diffraction
Characterizes the
beam/matter interaction

Spherical wave
diffused by atom O ;

Beam source .
Planar wave

\P L eikiZ
P =

| @DD

Interferences between the
spherical waves coming from
® an array of atoms generate a

o
diffraction pattern

detector




Basic principles of diffraction

If one considers a perfect crystal, periodic in the 3 dimensions:

Position of atom | in the cell m:

—_— —

= R, = 1 DO
mj = Rj =71j + Ry

Ri=7 +1,d + b + 3¢

e o | o o
p0
Ny

@ (] @ @ @

Il’ |2, |3 integers O

a,b,c unit cell vectors




Scattering by a crystal

The detector is set at M, in the diffusion plane, at a distance R (R >>R))
from the origin O

Incident beam, unit wave vector ki

Diffracted beam, unit wave vector kf

To arrive at M, the wave
originating in O has travelled

the distance R, the one B AO" = —R; - k;
originating in O" has travelled kf BO' = _ﬁj Ef

R+AO’+O’B

>

‘l:l- — Ef‘ = 2sinf



Scattering by a crystal

Summing on all the crystal atomic positions, one gets the differential
cross section (elastic process), which is proportional to the square of
the diffracted wave modulus :

Number of neutrons

scattered per second in 0o el L 2
solid angle df around _ i1(Q'R;)
= bje J
20 /
R;

the direction Ef with
any energy, normalized
to the incident neutron
flux ¢

. Zn - o Y —~,  4msinf
with 7(kl _ kf) =( |Q| — p

scattering vector




Scattering by a crystal

Elastic scattering differential cross section

istal

Z 0iQ-(l1a+1,b+15C)

do el_
Q)

b

Sum over all the cells
Depends on the crystal periodicity

Non-zero when Q is a vector of the
Structure factor reciprocal space

F(Q) Crystal form factor

c(Q)
d—“ - [FQPICQF o

Sum over N atoms in the cell
Depends on the atomic positions within the
unit cell




Structure factor

The amplitude of the diffracted wave is proportionnal to

N
F@) = ) be @™
j=1

b; : defines the scattering by atom j ; 7j defines its position in the
unit cell ; N is the number of atoms in the cell



Polnt scatterer

Atom = point scatterer
In this case, the scattering amplitude does not depend on the
diffusion angle : this is the case of the nuclear diffraction of neutrons

N .
F(hkl) _ ije2|ﬂ(hxj+kyj+lzj)
=1

b, :

J
It describes the neutron-nucleus interaction

b varies in a non-monotonous way with the atomic number Z.
Isotopes can have very different b’s!

=P Neutrons can distinguish atoms with similar Z numbers (# RX) ; can

locate light atoms in a structure with heavy elements. They are also
sensitive to H/D.

Neutrons are a privileged tool for the study of organic compounds



Neutron scattering lengths (Z, < 35)
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Atomle scatterer

Atom = scattering object, size ~ A, group of identical point scatterers
Case of X-rays (electrons) and of neutron magnetic diffraction (unpaired
electrons)

bj :bcfj(Q)
[\

constant  depends on the diffusion 0

X-rays :

¢ _ sin 6 -
j(Q)— 0 7 + Anomal diffusion terms



ETOMIC SCTATTERING FACTOR CURWE FOR ELEMEMT Al — WEBZCAT by B.Rupp
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The scattered intensity decreases at large angles.
# neutrons!! With neutrons it is possible to determine atomic

positions and thermal displacement factors precisely.
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Thermal olisptacemewt parameter

Thermal displacement : oscillating motion of atoms around their equilibrium

position
This displacement decreases scattering, and has a larger effect when :
* Tis large
e atoms are light
sin 6
e — "large
P g
Displacement : atomic plane with a thickness <U2>

large 6

w
g A
2 2e”) L

di IW s (404 1 ;
7 R/, A i

0large —— /<u2> becomes important compared with d,,,




<u2> inorganic compounds : ~ 0.05 A -0.2 A
organic compounds : ~ 0.5 A

Isotropic temperature factor B

2/ 2\ inorganic compounds :~ 0.2 A2-3.2 A2
B == 872. <u > g . p T~ °2
organic compounds :~ 20 A

~,sin® 0
F (hkl) = F(hkle ~ #

(oversimplified correction)

|dentical effects in neutrons and X-rays
It leads to a decrease of the scattered intensity at large angles
(NOT to a broadening)

Anisotropic matrices can be introduced in complex cases



Example : Tert-butanol
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Example of X-rn Y/ neutrons complementa rlt@

O
Phase transitions in 4AMPO

ET CD,NO(CD,)

H

: Planar molecule
« symmetric »

C'/\ Methyl group CH,

i 250K ) 100K
91K
1 1 13K >< >< 1st order
2nd grder >< ><
i 1 X X
X X




Example of X-r Y/ meutrons complementn rlt@

Newtrons — 2T2 (LLB)
AMPO at 10 K
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Example of X-rn Y/ neutrons complementa rit@

To solve the crystal structure at 10 K : synchrotron X-ray diffraction experiment
at 10 K (cell parameters, space group, position of molecules (without D atoms)

9000

27000

Z0o0oa

13000

aO000

PW - ESRF SNBL

ooooooooooooooooooooooooooooooooooooooooooooo
.

—T §27000
§23000
§19000
§15000
311000
g 7000
g 3000
;1000

:-5000

oooooooooooooooooooooooooooooooooooooooooooooooooooo

20 (°)

33



Example of X-rn Y/ neutrons complementa ritg

Neutron data analysis

2000 rrtrgfrrrrgrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 1 1111
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Magwetic diffraction

‘ Rementbey, the neutron has a spin 1/2
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Magwetic Moment

Atoms can carry a magnetic moment, as for instance 3d elements with unpaired

electrons (Mn...), but also 4d elements (Mo...), 4f (rare-earths comme Nd, Dy,...) etc...

Moments can order below an order temperature, called T.ou T

aramagnet(i)c state
g b 0
§ o @

°- % 6 w
0 - 0 ¢

Thermal fluctuations dominate over
exchange interactions, magnetic
moments are fluctuating

Ordered state T<T,T,
(S;)# 0

L S N
o, @ o @

o el e
. & o e

Exchange interactions dominate over
thermal fluctuations, magnetic
moments are ordered




S'quste cases

Temperature (K) Temperature (K)

Ferromagnet : :
8 Collinear antiferromagnet

More often than not, magnetic structures can be complex, because of
competing interactions, magnetic anisotropy, etc...



Example of a complex magnetic structure Mnsbs,CL

Incommensurate magnetic structure,
with two possible models: helicoidal or
modulated sinusoidal

C. Doussier et al., J. Solid State Chem. 179 (2006), 486




Ditfraction by an ordered magnetic structure

Magnetic scattering is taken into account using the formula

I | . -
by + 2Bl -5+ 5y fm(Q)(My - S)

- /
v~
(Isotropic) nuclear term
Interaction between neutron spin s and
nucleus spin | Dipolar interaction between
This depends neutron spin neutron s and atom
$ & $ @ on the spin magnetic moment
state of the
n n neutron and of

the nuclei!
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Fourier transform of the density of the

unpaired electrons of the atom SRR
(can be pictured as the spatial extension of If M || Q: no magnetic
the electron cloud) intensity

Projection of the magnetic

moment of the atom on a

plane perpendicular to the
scattering vector Q

fM L 6: maximum magnetic
intensity

How can we understand the fact thatitis M
which is important, and not M...



In a diffusion process, it is the planes which are perpendicular to Q
which will contribute to the scattered amplitude, as they are in phase.

One can decompose M into two components M//Qet MLQ

Neutrons can feel the magnetic field created by M_L. For M// the magnetic field
are opposite and the sum is zero.

M// ML

D Sl
i =0 Q 3

2 i M



RN (RS

A mhmnm/)r/v

n s AU - N - Nuclear interaction

& Dipolar interaction
WRORR N (i, , )
Crystallographic structure = long-range (periodic) ordering of atoms:

e unit cell + space group + atomic B
positions of the aiymnletric unit F(ﬁ) _ Z bjezm(H.Fj)
e Bragg peaksat Q =

Magnetic structure = long-range ordering of “magnetic moments”

I _ o
Fu(H + ) =Sy, ) f;(H + )52+
=1

e magnetic motif (inside the crystallographic unit cell) + propagation
vector k

e Bragg peaks at Q =

= Ef - E)i: scattering vector

T QL

: vector of the reciprocal lattice



Nuclear and magnetic scattering cross sections for elastic
scatterings are in general of the same order of magnitude

For a non polarised neutron beam, the total intensity will be the proportionnal to the
sum of the nuclear and magnetic intensities

| (hKI) = 1 (hk) + 1, (hK])

prsssssssssssansanes : Antiferromagnetic state
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How to describe a periodic magwnetic order

Similarly to what was shown previously cell m
Ry =1+ o o | o O
. o o o
— 21tKk-R

Mmj = zS j€ " "

m
k @ @ _
*
S—kj =S j o ¢ 0
O

k : propagation vector of the magnetic structure (vector of the reciprocal space),

shows the periodicity and the direction of the propagation

S,; : complex vector (Fourier component) describing the magnetic moment

associated to each magnetic atom j for a given k vector




Examp les

Commensurate propagation vector

k=(000) (k = 0)

Magnetic periodicty = crystal
periodicity

Ferromagnetic Antiferromagnetic
& &
o ¢
So o
JRLE |
o 0{
- ‘ oo

fin=5 =0 Do o

(several magnetic atoms

in the unit cell)

Mpyj = z Skje—ZTtk-Rm
k

k=(0.500)
(k = 5 a)

Doubling of the cell along a

_a




ExXa VWPL@S My = 2 Skje—an.ﬁm

—4a
e k = (0.5 0 0)
- 1 —
(k= >a")

Doubling of the cell

along a : magnetic

periodicity is twice
the crystal cell

periodicity

Reminder
Inacellmlocated at R, = Ld + l,b + I.¢ a.a’ =1
n a cell m located a =1l,a C > o ooy

L™= a b ¢ b.a*x=¢.a* =0

Incellm=0at§0=6 la=10,=1lc=0 =>7Ti0=+§§
Incellm=1at§1=& la =11, =Ilc = :>7T’11=—§§=—77i0
Incellm=2atR, = 2d lo=2,1,=1lc=0 :>r7i2=+§%=+17’10

—inly — (_1)la 5%

®

N _—)



Examp les

Propagation vectors can be incommensurate too!

m,; =u; cos(2z(kR, +¢;)) % M Q\\M

Sine wave order (amplitude modulated) | J

m, =u; cos(2z(kR; + @) +V; sin( 2z (kR + ¢y;))

490980 B 9eR00A0H %

T)

C%_D

C

Circular helix Elliptic helix



How to determine a magwnetic structure

In practice, determining a magnetic structure can be tricky :

- large number of parameters (up to 6 coefficients and one phase
shift per magnetic atom and per k)

- few observations, especially in powders

- magnetic form factor

In fact, tools are available to make the task easier: we can simplify the
analysis of systems that possess a degree of symmetry, by
distinguishing the configurations that are possible given the known
symmetry operations.

Possibility of using a polarized neutron beam in the most difficult cases



Description of & magwetic structure

* Based onirreducible representations and basis
vectors, use of group theory, propagation vector

formalism

Advantage : any magnetic structure can be described
Drawback : not very easy for beginners

 Magnetic crystallography and magnetic space groups
(Shubnikov groups)

Drawback : superspace groups for incommensurate magnetic orders are still
being developped
Advantage : easier for beginners




A bit of magwnetic crystallography?




A Little veminder flvst : the difference
betweewn 0 polar vector and an axial
vector (= spin)
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« The lost s Y mmetry opemt’uow »

« We do not add but substract symmetry
operations »

In magnetic crystallography, the lost symmetry operation,
which is always present in non magnetic structures but
absent in magnetically ordered ones is TIME INVERSION

(or time reversal).



Time reversal

This new symmetry operator, time reversal, is
written {1'|0 O O}

— i —>

(Spin : current loop)
Axial vector




Time reversal

{1'|0 0 0} does not modify atomic positions,
but changes the direction (sign) of the
magnetic moment

{1’10 0 0} alone cannot be a symmetry
operation in a magnetic structure

...all non magnetic structures are time reversal
symmetric (but no one cares!)



Magwetic polnt groups

With the addition of time reversal, one gets new symmety elements,
combining a symmetry operator and 1’

e |
0|0 TT

During a magnetic phase transition, some symmetry operators can
become prime, or disappear alltogether



Magwetic polnt groups

If you remember, there are 32 point groups in classical crystallography

Adding 1’ , one generates 122 magnetic point groups
32 colorless (without 17)
grey (paramagnetic)

58 « black and white »

e



Magnetic polnt groups
Example with 2/m

2/m
colorless

X, Y, Z +1 (1)
X, -y, z +1(2)
X, y,-z +1(m)
X, -y, -z +1(-1)

X, Y, Z +1 (1) X, YV, Z +1 (1)

X, -y, Z -1(2)) X, -y, Z -1(2))
X, Y, -Z +1 (m) X, YV, -Z -1 (m)
X, -y, -z -1(-1) X, -y, -z +1(-1)

Ferromagnetic if moments
are in the mirror plane

X, Y, Z +1 (1)
X, Y, Z -1 (1)
-X, =Y, Z +1 (2)
-X, =Y, Z -1 (2)
X, Y, -Z +1 (m)
X, Y, -Z -1 (m’)

+1 (-1)

X, Y, Z +1 (1)
-X, -y, Z +1 (2)
X, Y, -Z -1 (m’)
-X, -Y, -Z -1 (-1)



Magwetic polnt groups, prediction of physical
properties

Knowledge of the magnetic point group can be useful to access the
tensors of various macroscopic properties, such as the linear
magnetoelectric effect, electrical polarization...

Ex : ferromagnetoeletrics (ferromagnism+electric polarization)

Table 1.5.8.4. List of the magnetic point groups of the ferromagnetoelectrics

Symbol of symmetry group Allowed direction of
Schoenflies | Hermann-Mauguin p M
C, 1 Any Any
C, 2 |2 I 2
G, (C) 2 12 12
C.=cC, m | m 1m
C.(C)) m | m' | '
C,,(Cy) m'm'2 |2 2
C,.(C,) m'm2’ 2 1m
C, 4 | 4 || 4
C,(C,) dm'm’ | 4 || 4
G 3 I3 I3
C,.(C,) 3m’ I3 I3
Cs 6 I 6 I 6
C,.(Cy) 6m'm' | 6 | 6

International tables for crystallography (2006), Vol. D, Section 1.5.8.3, pp. 141-142



Magwetie Space groups

230 crystallographic
space groups from
la-3d to P1

1651 magnetic space

groups (Shubnikov),
1191 of them compatible
with a magnetic order

¥ 2
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Magnetic Group . i
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Magnetic space groups can be used in FullProf



Magwnetic space groups




To take into account time reversal :

Pnma.l’= Pnma + {1°'|0 0 O} x Pnma

Pnmasymmetry operators are
iplied by {1°|0 O O}

mul

X, Y, z, +1 {11000}

: X, Y,z -1
x+1/2, -y, z+1/2, +1 {2001 11/201/2}  x#1/2, -y+1/2, 24102,
1
X, y+1/2, -z +1 {2010]01/20} X, y+1/2, -z, -1 {29,,101/20}
x+1/2, -y+1/2, -z+1/2, {2101 221212} x+1/2, -y, Z+1/2, {290, | 1/201/2}
+1
-1
X, -y, -z, +1 {-1]000} X, -y, -z, -1 {-1'1000}
x+1/2,y, -z+1/2, +1 {Mgoy [ 1/201/2 } X+1/2, y+1/2, z+1/2, -1 {M'yo | 1/2 1/2 1/2}
X, -y+1/2,z, +1 {mg, [01/20} X, -y+1/2, z, -1 {m'y,]01/20}
x+1/2, y+1/2, z+1/2, +1 (Mo | 121212} | x+1/2,y, -z+1/2, -1 {M'y | 1/201/2}

There are now 16 operations instead of eight



Pnma.1" is not compatible with magnetic order as it contains
the operator {1'|0 0 O} on its own

It is a grey group, which corresponds to the symmetry of the
paramagnetic state

Magnetic structures only have symmetry operators where
{1"|0 0 0} is combined with another operator (or is not

present)

For example
A translation : {1’ |t} ={1"| 0 0 O}{1 | t}
A mirror {m’|t} ={1"|0 0 O}{m |t}
A rotation {2’|t} ={1"]0 0 0}{2]t}
etc...



To build a space group allowing magnetic order

X, Y, z, +1 {11000}

-X+1/2w/2 01/2}

{201101/20}

x+1/2, -yw 1/2 112}

-X, y+1/2, -z ,+1

-X, -y, -2, +1 {-11]000}
x+1/ -z+1/2, +1 | /20 1/2}
X, -y+1/2,z, +1 {my,,]021/20}

X+1/2, y+1W1/2 1/2'}

x+1/2, -y+1/2, -z+1/2,
-1

X Y el R0 1/2 0 }

x+1/2, -y, z+1/2, {2001 1/201/2}
1

x+1/2, y+1/2, z+1/2, -1 (Mmoo | 1/2 1/2 1/2 }

ettt 0 1120}

x+1/2, y, -z+1/2, -1 {M'y, | 1/201/2}

{2100 | 1/2 112 1/2 }

——Pamade=—  Pn’'ma’

Sous-groupe d'index 2




Fortunately this can be computed!

Bilbao Crystallographic Server = k_Subgroupsmag

Input data

Subgroups of the paramagnetic space group :
Onhy maximal subgroups should be shown
WMagnetic propagation wawve-vectors

Pama1’ (N. 62)
(0,0,00

Graph of subgroups that fulfill the given conditions

Get the full list of subgroups

62.441

Graph made using Graphviz
Download a postscript file
Remaove lzbels

Get information about the groups of the conjugacy class with Iabell:l Get information

Get the subgraph between the group (or conjugacy class) with label I:l and the group (or conjugacy class) with Iabell:l according to these rules | Getgraph

Bilbao Crystallographic Server
http:/fwww.oryst.ehu.es

For comments, please mail to
administrador.bosi@ehu.eus

Group/Subgroup relationships obtained with k-
subgroupmag.
In this example, k = 0, maximal space groups

To visit! BCS : https://www.cryst.ehu.es/



Not to forget

To report a magnetic structure properly, use a .mcif file
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Take-home messages é




With neutron diffraction you can...

... study crystal structures, locate light atoms,
determine thermal parameters

..study phase transitionsvs. T, P, H, ...

..perform in situ, or cinetic studies

...study microstructures (stress, contraints, ...)
..study magnetic ordrers, get spin density maps
...carry out quantitive analysis (H)




Aodvantages/Drawbacks

I—'RX/ Synchrotrow
= bulk ‘

(very) high flux,
" light elements small samples

= contrast (H/D) 7 = (very) high resolution
" magnetic structures = surfaces

= weak scattering for
light elements

= sample damage

= surfaces!

= [ow flux, bigger samples
= [ow resolution
" some absorption issues

(Gd, B, Cd...)
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Thawk you for Your attention!
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Laboratoire Léon Brillouin



