Lecture : Coherence School of Crystallography 2024

Vincent JACQUES Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, 91405 Orsay vincent.jacques@universite-paris-saclay.fr

November 8th 2024 – Synchrotron SOLEIL

Coherence Outline of the Lecture

Reflections on Coherence... From Visible to X-rays

Generating and Using X-ray Coherence – From the Source Point to the Detector

- Definition of Beam Coherence: Volume and Degree of Coherence
- > Natural Emergence of Coherence: Generating Coherent X-rays from Incoherent Sources
- Measuring X-ray Coherence: Diffracting Object and Near/Far-field Detection
- Current Use of Coherent X-rays in Condensed Matter
 - What Can We Expect to See in X-ray Diffraction on Disordered Systems?
 - Structural Studies through Direct Analysis of Speckle Patterns
 - Coherent Diffraction Imaging:
 - Forward Techniques: CDI, Holography, Ptychography, Phase Contrast Tomography
 - In Bragg Condition: CDI, Holography, Ptychography
 - Slow Dynamics Experiments: XPCS (Forward or Bragg)
- New Opportunities Offered by Next-Generation Sources

A Standard Coherent Source: The Visible Laser

 λ = 530nm What is the typical object size that can diffract light?

Diffraction of a Grating by a Laser Beam?

√ОК

Grating through binoculars

Fourier Transform

Diffraction of a hair by a laser beam?

a~100µm...

Following these observations, we can ask a few questions...

- \blacktriangleright What are the conditions on λ and *a* to observe a diffraction pattern?
- What are the properties of the laser necessary to get diffraction by these objects?
- Would the same experiments work with X-rays?
- > What is coherence?
- How can coherent X-rays be generated in practice?
- How could a coherent X-ray beam be useful in condensed matter?

What can be learned from Ewald's construction ?

To observe the diffraction of a beam having a wavelength λ by a crystal with lattice parameter a, it is necessary to have:

Generating and Using X-ray Coherence – From the Source Point to the Detector

- Reflections on Coherence... From Visible to X-rays
- Generating and Using X-ray Coherence From the Source Point to the Detector
 - > Definition of Beam Coherence: Volume and Degree of Coherence
 - > Natural Emergence of Coherence: Generating Coherent X-rays from Incoherent Sources
 - Measuring X-ray Coherence: Diffracting Object and Near/Far-field Detection
- Current Use of Coherent X-rays in Condensed Matter
- New Opportunities Offered by Next-Generation Sources

Basic Experiment to Study an Object: Illuminate It

Necessary Equipment: A Source, an Object, a Detector

How to Introduce Coherence into This Experiment?

- On the source side ?

- On the object side ?

- Set Up Under Specific Observation Conditions / Use a Special Detector ?

Where does the coherence of a beam come from?

What limits the validity of the summation of light amplitudes?

Longitudinal coherence length (temporal)

$$2\xi_L = \frac{\lambda^2}{\Delta\lambda}$$

Proportional to λ , inversely proportional to $\Delta\lambda/\lambda$

 \rightarrow The smaller λ , the smaller ξ_1 ...

Transverse coherence length (spatial)

 $\xi_{\text{T}}: \text{length perpendicular to } \textbf{k} \text{ for} \\ \text{which two beams having an} \\ \text{incidence difference } \alpha \text{ will be} \\ \text{out-of-phase} \\ \end{cases}$

$$tg(\alpha) = \frac{S}{R} = \frac{\lambda}{2\xi_{\alpha}}$$

$$2\xi_T = \frac{\lambda R}{S}$$

 $\frac{S}{R}$ Numerical aperture of the source

 $\begin{array}{l} \mbox{Proportional to } \lambda \\ \mbox{Proportional to the source-sample distance} \\ \mbox{Inversely proportional to the source size} \end{array}$

Link Between the Coherence Volume and the Sample Volumes

How to Gain Spatial Coherence (easily)?

Propagation of a partially coherent beam

We can get a coherent beam from an intrinsically incoherent source (like the sun)

2. Coherence Degree:

$$\beta = \frac{\xi(z)}{\sigma(z)} = \frac{\xi}{\sigma}$$

The coherence degree is constant through propagation

A Bit of Pragmatism: Coherence in Numbers...

With wavelengths more than 1000 times smaller than visible wavelengths, what values do we obtain?

Increase Coherent Flux Using Large Scale Instruments

With an undulator beamline at SOLEIL

Influence of Optical Elements on Coherence Surface rugosity

With X-rays, the surface roughness must be compared to λ ...

Optical elements quickly degrade the coherence of an X-ray beam...It is necessary to use secondary sources after the optics and let the beam propagate freely as much as possible.

Coherence setup of the CRISTAL beamline at SOLEIL

Measuring the Coherence Degree of an X-ray Beam

The visibility of the fringes is related to the degree of coherence. At synchrotron facilities \rightarrow measure the degree of coherence with slits?

X-rays $(\lambda \sim 1 \text{ Å})$ with a=2µm slit: d_f= 2 cm

Measurement at the CRISTAL beamline of SOLEIL

2m

Ligne Cristal Soleil

Visibility measurement in the far-field at CRISTAL

Measuring visibility in the near-field at CRISTAL

Slit gap (μm)

Current Use of Coherent X-rays in Condensed Matter

- Reflections on Coherence... From Visible to X-rays
- Generating and Using X-ray Coherence From the Source Point to the Detector
- Current Use of Coherent X-rays in Condensed Matter
 - What Can We Expect to See in X-ray Diffraction on Disordered Systems?
 - Structural Studies through Direct Analysis of Speckle Patterns
 - Coherent Diffraction Imaging:
 - Forward Techniques: CDI, Holography, Ptychography, Phase Contrast Tomography
 - > In Bragg Condition: CDI, Holography, Ptychography
 - Slow Dynamics Experiments: XPCS (Forward or Bragg)
- New Opportunities Offered by Next-Generation Sources

What does coherence bring in diffraction ?

Classical diffraction allows for a perfect determination of the average structure of crystals! This is done by measuring *a portion of reciprocal space*, applying *symmetry constraints*, and carefully analyzing the *intensities of the Bragg peaks*.

Coherent diffraction provides information about deviations from the perfect arrangement.

For a crystal with disorder:

=

$$A(\mathbf{q}) = \sum_{uvw} F_{uvw}(\mathbf{q}) e^{-i\mathbf{q}\cdot\mathbf{R}_{uvw}} = \sum_{n} F_{n}(\mathbf{q}) e^{-i\mathbf{q}\cdot\mathbf{r}_{n}}$$

$$A^*(\mathbf{q})A(\mathbf{q}) = \sum_m \left(\sum_n F_n^* F_{n+m}\right) e^{-i\mathbf{q}\cdot\mathbf{r}_m}$$

 $\phi_n = F_n - \langle F_n
angle$ Deviation from the Average Structure Factors

Intensity obtained in the case of a disordered crystal

$$I_{tot}(q) = I_B(q) + I_{DD}(q) + I_S(q)$$

$$I_{B}(\mathbf{q}) = |\langle F \rangle|^{2} \sum_{hkl} \frac{|\Sigma(\mathbf{q} - \mathbf{Q}_{hkl})|^{2}}{v^{2}} \longrightarrow \text{Diffraction term}$$

$$I_{DD}(\mathbf{q}) = \sum_{m} N(m) \langle \phi_{0}^{*} \phi_{m} \rangle e^{-i\mathbf{q} \cdot \mathbf{r}_{m}} \longrightarrow \text{Diffuse scattering term}$$

$$I_{S}(\mathbf{q}) = \sum_{m} N(m) \Delta_{m} e^{-i\mathbf{q} \cdot \mathbf{r}_{m}} \longrightarrow \text{Speckle term}$$

Fourier transform of fluctuations

Produces interference on the diffracted signal, called speckles.

Visible with a coherent beam, if the temporal fluctuations are slow compared to the acquisition time.

Several Ways to Exploit X-ray Coherence

A.S. Poulos, J. Chem. Phys. 132, 091101 (2010)

Effect of a Single Dislocation on Coherent Bragg Diffraction

Dislocation Loops in a Specific Si Sample

Prismatic loop

Sample preparation:

Growth under O_2 Annealing 35h under O_2 Defect Concentration : 10^{18} cm⁻³

Direct Imaging of the Dislocation Line Using a Coherent Beam

Resolution: 5µm

Revealing a Large-Scale Dissociation

V. Jacques et al., PRL 107, 199602 (2011)

Lensless Imaging using coherent x-rays

Principle: retrieve the phase lost during the measurement ... Several techniques...

These techniques can be used:

- in transmission near the reciprocal space origin : imaging local density
- In diffraction at wide angles: probing local displacement field

$$A(\mathbf{q}) = \sum_{n} F_{n}(\mathbf{q})e^{-i\mathbf{q}\cdot\mathbf{r}_{n}} \qquad r_{n} = r_{0} + u_{n} \qquad A(q) = \sum_{n} F_{n}(q)e^{-iq.r_{0}}e^{iq.u_{n}}$$
Phase

X-ray Holography on a system having magnetic domains (CoPt)

Lensless imaging of magnetic nanostructures by X-ray spectro-holography

S. Eisebitt 1 , J. Lüning 2 , W. F. Schlotter 2,3 , M. Lörgen 1 , O. Hellwig 1,4 , W. Eberhardt 1 & J. Stöhr 2

Resolution : 50nm

Éisebitt et al., Nature432, 885 (2004)

X-ray Holography in Bragg condition

Phase Retrieval Algorithms for CDI

Recover the phase lost during the measurement using an algorithm that performs Fourier Transforms (FT) and Inverse Fourier Transforms (FT⁻¹) in a loop, until it converges to a solution, applying constraints in both real space and Fourier space.

Coherent Diffraction Imaging (CDI): phase retrieval algorithm

First Implementation of Forward CDI

Fourier space constraints real space constraints $g_i(\mathbf{x}) \xrightarrow{\mathcal{F}} G_i(\mathbf{k}) = |G| e^{i\phi} \longrightarrow G'_i(\mathbf{k}) = |F(\mathbf{k})| e^{i\phi} \xrightarrow{\mathcal{F}^{-1}} g'_i(\mathbf{x}) \longrightarrow g_{i+1}(\mathbf{x})$

- The error can only decrease... or stay the same.
- J. R. Fienup Optics Letters 3 27-29 (1978)
- J. Miao, D. Sayre and H. N. Chapman JOSA A 15 1662-1669 (1988)

CDI in Bragg Condition: Access to the Strain Field

Three-dimensional mapping of a deformation field inside a nanocrystal

Mark A. Pfeifer¹[†], Garth J. Williams¹[†], Ivan A. Vartanyants¹[†], Ross Harder¹ & Ian K. Robinson¹[†]

Sensitivity to strain $\Delta \phi = \mathbf{k}_{f} \cdot \mathbf{u} - \mathbf{k}_{i} \cdot \mathbf{u} = \mathbf{Q} \cdot \mathbf{u}$

Nature 442, 63 (2006)

A Dislocation Loop Appearing Under Strain

Applied Force : 560 nN

M. Dupraz et al., Nano Letters 17, 6696 (2017)

ISSN 1600-5767

Signature of dislocations and stacking faults of facecentred cubic nanocrystals in coherent X-ray diffraction patterns: a numerical study

Maxime Dupraz,^{a,b}* Guillaume Beutier,^{a,b} David Rodney,^{a,b,c} Dan Mordehai^d and Marc Verdier^{a,b}

Ptychography: lensless imaging on 'big' samples

'big' = larger than the coherent beam used...

The CDI algorithm is applied to each image taken at each position. Real space constraint: overlap between positions.

Tomographic Ptychography on a Mouse Bone

Dierolf et al., Nature 436, 467 (2010)

Bragg Ptychography and Strain Field

Strain field around dislocations !

Takahashi et al., PRB 87, 121201 (2013)

Study of the Temporal Dynamics of Speckles: XPCS (X-ray Photon Correlation Spectroscopy)

New opportunities offered by next-generation sources

- Introduction: What are the key quantities to consider for coherence?
- Coherence: From the source point to the detector
- Current use of coherent X-rays
- New opportunities offered by next-generation sources
 - Coherence and nanofocusing
 - Next-generation synchrotron sources: ultimate storage rings
 - Coherence and time-resolved measurements at XFELs

Circumference	528 m
No. of long straight sections / no. of available ID straights	20/19
njection	Full-energy top-up from MAX IV Linac
Stored current	500 mA
lorizontal emittance	~200 - 330 pm rad (depending on ID gap settings)
/ertical emittance	2 - 8 pm rad (depending on user demand)
ypical horizontal beam size at ID center	42 - 54 micron (depending on horizontal emittance)
ypical horizontal beam divergence at ID center	4.7 - 6.1 urad (depending on ID gap settings)
ypical vertical beam size at ID center	2 - 4 micron (depending on choice of vertical emittance)
vpical vertical beam divergence at ID center	1 - 2 urad (depending on choice of vertical emittance)

Machine characteristics

- Very low emittance (divided by ~10)
- Very small source sizes (divided by 10)
- Brighter sources

Techniques

COHERENCE

NANOFOCUSING

TIME-RESOLVED

Propriétés combinables pour explorer la matière de manière inédite!

Coherent X-ray Nanodiffraction Setup

Enders, Thibault, Proc. R. Soc. A 472: 20160640 (2016)

Reconstruction of the Phase and Amplitude Profile of a Focused Beam by Ptychography

Astigmatism Correction, Measurement of the Size, and Phase Profile of the Focused Beam

Single InAs Nanowires Probed by Coherent Nanodiffraction

Diaz A. et al., PRB 79, 125324 (2009)

Free-Electron X-ray Lasers: Naturally Coherent Sources with Ultrafast Pulses

Complementary to Synchrotrons for Specific Studies

Advantages: Brightness, fs Temporal StructureDisadvantages: Stability, Sample Damage, Limited Access

Combining coherence, nanodiffraction, and time-resolution at XFELs...

Ultrafast Three-Dimensional Imaging of Lattice Dynamics in Individual Gold Nanocrystals J. N. Clark *et al. Science* **341**, 56 (2013); DOI: 10.1126/science.1236034

... Imaging an acoustic phonon in a gold nanocrystal

