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A crystal

Ordered object

N ~ 1018 atoms



A crystal

Symmetric object

Neumann principle : « the symmetry elements of any physical property of a 

crystal should include all the symmetry elements of the symmetry point 

group of that crystal »



Fundamental Concepts

1- The symmetry of  ideal crystalline structures: a better understanding of  

crystalline architectures and the consequences for their physical properties

2- The phenomenon of  diffraction: the investigative tool of  choice for 

fine, detailed structural analysis of  atomic and molecular arrangements in 

ordered crystalline solids

Two pillars of  crystallography



Use of single crystal X-ray diffraction

Structure-properties relationship

Magnetic

Electrical
Biological activity

Catalytic 
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Use of single crystal X-ray diffraction

XRD

Reciprocal space

Background noise

Shadow of the 
beamstop(or well, 
which masks the 
direct beam)

Diffraction 
peak(hkl)

Sulfatedecuivre.mp4


Use of single crystal X-ray diffraction

Structural model

XRD

Symmetry

Bond distances

Bond angles

disorder

Thermal smearing

At thermodynamic equilibrium or 

out of equilibrium



Use of single crystal X-ray diffraction

▪ Symmetry : determination of point group

▪ twins?

▪ Polymorphism?

▪ Crystal quality

▪ Microstructure

▪ Diffuse scattering (=disorder)

▪ twins?

▪ Symmetry (determination of certain 

translational symmetry elements, lattice mode)

▪ Chemical composition 

▪ Symmetry (determination of space group)

▪ Structural organisation

▪ Studies as a function of T, P, …



A crystal 

1. Asymmetric unit = motif

Asymmetric unit
ab

c

Ordered object

N ~ 1018 atoms



A crystal 

ab

C2/c

ab

c

1. Asymmetric unit = motif

2. Space group

Unit cell

Symmetry 
operations



A crystal 

1. Asymmetric unit = motif

2. Space group
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1. Asymmetric unit = motif

2. Space group

3. Translational invariance (periodicity x, y, z)

4. Ideally imperfect (mosaic grains)

5. Defects and impurities does not perturb order

A crystal 

Unit cell

ab

ab

c

Lattice
function

Symmetry 
operations

C2/c



Principle of single crystal x-ray diffraction
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Periodic system

Diffraction 
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scattered waves by all the electrons)
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Unit cell structure factor
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Scattering object:

fj : atomic scattering factor



Unit cell structure factor

Re

Im

Argand diagram

Re

Im

Accounting for anomalous dispersion



Structure factor and interference function
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Crystal periodicity



Interference function
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Finite size effects

Influence of finite size on the scattering process :
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Reciprocal lattice associated to a single crystal



Principle of a single crystal diffraction experiment 

Peak positions
=

Unit cell parameters

Peak intensity
=

Unit cell content

Peak shape
=

Microstructure



Plane (0,1)

Geometry of diffraction, Bragg condition 



Plane (0,1)



Geometry of diffraction, Bragg condition 



Plane (0,1)



Geometry of diffraction, Bragg condition 





Geometry of diffraction, Bragg condition 



dhkl

( ) ( )  sin2sinsin hklhklhkl dddBCAB =+=+
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B

C

Plane (0,1)





Geometry of diffraction, Bragg condition 



Bragg law

2dhklsin = ndhkl

( ) ( )  sin2sinsin hklhklhkl dddBCAB =+=+

A
B

C

Plane (0,1)

Bragg condition : the path difference between two waves must be equal to n times the wavelength



Bragg law

2dhklsin = n

Geometry of diffraction, Ewald construction
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Plane (0,1)



Geometry of diffraction, Ewald construction

http://www.doe-mbi.ucla.edu/~sawaya/m230d

R

R*



http://www.doe-mbi.ucla.edu/~sawaya/m230d

Plane (1,1)

Geometry of diffraction, Ewald construction

R

R*



http://www.doe-mbi.ucla.edu/~sawaya/m230d

Plane (2,1)

Geometry of diffraction, Ewald construction

Plane (-3,0)

R

R*



animation

Collecting diffraction frames

http://www.doe-mbi.ucla.edu/~sawaya/m230d

EwaldSphere.exe



Collecting diffraction frames

0 <  < 1 1 <  < 2 2 <  < 3 3 <  < 4 4 <  < 5



Indexing and data integration

*** clbkahH


++=

Indexing : determine orientation matrix and unit cell 

parameters a*, b*, c*, *, *, * so that the Miller 

indices (h k l) which define the position of each Bragg 

peak in reciprocal space are integers :

(002)

a*

c*

b*

Integration

❑ Pixel-by-pixel summation over an integration volume

❑ Application of a 2D or 3D profile / profile fitting and learnt profile

❑ Background noise estimation



Collecting diffraction frames

(0kl) layer

b*

c*

Space group C2/c

Systematic absence :
(0kl) with k=2n+1
(00l) with l=2n+1



Collecting diffraction frames

(0kl) layer

b*

c*

Space group C2/c

Systematic absence :
(0kl) with k=2n+1 : C lattice mode
(00l) with l=2n+1 : mirror c perp. To b
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Use of single crystal x-ray diffraction

XRD

Structural model



Structure solution methods

Objective : determine the distribution of atomic electron density in the unit cell from 

diffraction data :

fondamental problem = phases are lost 
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Structure solution methods

R. Blessing, HWI, Buffalo



Structure solution methods

● Molecular replacement method: 

 - prior knowledge of molecular fragments

● Heavy atom method / Patterson : Dirdif, Shelx

 - prior knowledge = the structure contains at least one heavy element. Use of contrast 

effect

● direct methods: Shelx, Sir

 - prior knowledge = the crystal structure consists of discret atoms : accumulation of 

electron density in certain region of space (atomicity), chemical composition, symmetry 

● Charge flipping : Superflip

 - prior knowledge = the crystal structure consists of discret atoms : accumulation of 

electron density in certain region of space (atomicity)



Direct methods

Direct determination of the phases of structure factors from structure factor moduli using 

mathematical and probabilist relations that come from some obvious features of the electron 

density,

       ● positivity of the electron density (r)>0  (Hauptman & Karle, 1953) : gives a restraint on 

the set of physically acceptable phases (Hauptman determinant ≥ 0)

       ● atomicity of the electron density (Sayre, 1951): the electron densities of different atoms do    

not overlap

       ● symmetry of the crystal structure (origine)

       ● chemical composition of the unit cell

Normalized structure factors :

Allows to get rid of thermal smearing, and consider point atoms 



Direct methods : detection of inversion center

P(E) allows to distinguish a centrosymmetric structure from a non-centrosymmetric one

We can also analyze the various moments of the distribution E : 

N
(z

)



Direct methods : Sayre equation

        

         
     Sayre equation :

For strong values of              ,               is also strong, real and positive. It is thus highly probable 

that the most important terms of the Fourier summation are also real and positive.

Thus if            and                  are also high,   
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Direct methods : tangent formula

If we rewrite the Sayre equation ( ) ( ) ( ) ( ) −=
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Direct methods : tangent formula

( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )KHKKHFKF

KHKKHFKF

H

K

K 









−+−

−+−

=









cos

sin

tan
Tangent formula

Allows to explore the phase space by correlating phase largely distributed : iterative method of 

refinement and extension of phases

Cyclization in dual space
(SnB, SHELXD, SHELXT)

- Phases are refined in reciprocal space

- Direct space impose a strong atomicity constraint on phases

Direct methods : reciprocal space



Direct methods : Advantages & Disadvantages

Disadvantages:

❑ This set of methods is very efficient and most of the small molecules crystal structures are 

determined with this approach.

❑ Quick in practice, direct methods give a high proportion of the atomic positions, facilitating the 

refinement step.

❑ Figure of merits are associated to the results, this allows the result to be appreciated with 

hindsight.

❑ Direct methods are a matter of equations, they are fully automated, thus easy to use especially 

because decades of experience have allowed to have defaults parameters well optimized.

Advantages:

❑ Difficult to understand due to the mathematical aspects behind. Very often used as black-boxes.

❑ The space-group must be determined prior to applying direct methods.

❑ The phase relationships become a minor feature as the number of atoms in the structure increases. 

Above 2000 atoms in the unit-cell, direct methods are inefficient. This method is not applicable 

for proteins and large macromolecules.
Initial references for direct methods :

Karle, J. and Hauptman, H., Acta Cryst. 3 (1950), 181-187



Charge Flipping (CF) method (2004)

- ab-initio determination of crystal structure (periodic and aperiodic structures, single crystal and 

powder diffraction, X and N diffraction)

Sequence of the CF algorithm

|F | : experimental amplitude of structure factors, without phase 

F : structure factors with phase 

 : electron density with potential negative values 

g : electron density with only positive values 

G : structure factors with phase

Step 0 : random phases are attributed to the experimental data. 

General concept : the idea is to calculate anyway the inverse Fourier Transform of the structure factors and 

to correct the wrong phases obtained by a succession of iterations based on the fact that an electron density 

must be positive

Step 4 : the phases of G are kept while their amplitudes are 

replaced by the experimental ones, giving new F,

Step 3 : new structure factors, G, with their phases are 

calculated. 

Step 2 : the electron densities that are negative are inverted to

positive. This is the “charge flipping” that names the method

Step 1 : electron density in the unit-cell is calculated from F. 



Charge Flipping (CF) method (2004)

Disadvantages:

❑ CF needs no preliminary information on the crystal, except the Unit-cell parameters. The space 

group is NOT required since all calculation are made in P1, the space group is deduced at the end of 

the process. No need of information on the chemical composition.

❑ CF is tolerant to imperfects experimental data, though high noise may be problematic.

❑ CF proved to be very efficient in the case of aperiodic structures. Superspace crystallographers use it.

❑ CF is also of help in powder diffraction since the space group is often difficult to obtain in powder 

and CF does not need the space group.

❑ CF is easy to understand

Advantages:

❑ Data with bad resolution may not be pertinent for CF.

❑ Not much parameters that the user can adjust to converge towards the result

Basic references for CF :

The method was proposed in G. Oszlanyi and A. Suto, Acta Cryst A 60, 134, 2004

The implementation was developed in L. Palatinus, Acta Cryst B 69, 1, 2013



Improvement (refinement) of the structure

Structural model
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Structural analysis

- Thermal smearing ellipsoids

- Intermolecular contacts

- Bond distances

- Bond angles

- Torsion angles



Thermal smearing and Debye Waller factor

Born-Hoppenheimer approximation : the electron density follows the displacement of nucleus 
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approximation 

2uU = Is the quadratic mean displacement of the atom from its equilibrium position 



Thermal smearing and Debye Waller factor

In the isotropic harmonic approximation :
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Structural disorder

[Fe(btr)3].(ClO4)2

Static disorder ?

or dynamical disorder ?



Absolute structures

Friedel law : 

In the absence of anomalous dispersion, 

the diffraction pattern is centrosymetric :

Two structures containing two different 

enantiomers are not distinguishable  

( ) ( )EifEfff "'0 ++=

In presence of anomalous dispersion : 
Resonance phenomenon (EXAFS, XANES) 
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Absolute structures and optical activities

( ) ( ) ( ) ( ) 222 1, lkhFxhklFxxhklF −−−+−=

Non centrosymmetric space group:  P1         P1
Flack parameter x            0.012(1)        0.018(15)

1 2

(1S,2S)

(1S,2S)

(1S,2S)

(1R,2R)

(1R,2R)

Wang et al. Chem. Commun., (2009), 6940

Flack parameter : x  requires a heavy atom and an appropriate choice 
   of wavelength  



Polymorphism

{Fe(abpt)2[N(CN)2]2}

Polymorph A:

P-1

a=8.4618(5)Å, b=9.6086(3)Å, c=9.6381(7)Å

V =710.44(7)Å3, Z =1

Polymorph B:

P-1

a=9.599(2)Å, b=9.989(2)Å, c=16.106(2)Å

V =1491.6(4)Å3, Z =2

Single crystal combined to powder XRDMoliner et al., (2001), Inorg Chem, 40, 3986.

Sheu et al., (2008), Inorg Chem, 47, 10866.



Single crystal diffraction as a funciton of T

300K < T < 1000K

He cryostream

10K < T < 70K

90K < T < 300K

N2 cryostream

displex



Symmetry breaking : development of a surstructure

Bréfuel et al. Angew. Chem. (2009), 48, 9304

250 K

P22121, a=8.405(1)Å, b=9.469(2)Å, 

c=17.399(3)Å , V=1384.7(4)Å3

Z=2
[FeH2L2Me]-(PF6)2



Symmetry breaking : development of a surstructure

Bréfuel et al. Angew. Chem. (2009), 48, 9304

110 K

250 K

P22121, a=8.405(1)Å, b=9.469(2)Å, 

c=17.399(3)Å , V=1384.7(4)Å3

Z=2
[FeH2L2Me]-(PF6)2

P21, c=35.543(2)Å, 

V=2655(2)Å3, Z=4



Symmetry breaking : development of a surstructure

Bréfuel et al. Angew. Chem. (2009), 48, 9304

110 K

250 K

P22121, a=8.405(1)Å, b=9.469(2)Å, 

c=17.399(3)Å , V=1384.7(4)Å3

Z=2
[FeH2L2Me]-(PF6)2

P21, c=35.543(2)Å, 

V=2655(2)Å3, Z=4

Additional 3D order

New periodicity



Diffuse scattering and disorder

[Fe(NCSe)2(bdpp)]

Diffuse planes ⊥ to [101]

→ Strong 1D correlations along [101]

HS-LS-HS-LS ordering

No correlations between chains

S. Neville et al., Chem. Eur. J. (2008), 14, 10123

[101]



Photo-crystallography: principles

( )rfond

XRD XRD

modèle



Photo-chromism 

Diarylethen derivatives



Single crystal diffraction under pressure



P. Guionneau et al., Phys. Rev. (2005) B72, 214408

293 K

105 Pa 

HS

Single crystal diffraction under pressure

[MnIII(pyrol)3tren]



Isobaric expansion

( ) ( ) ( )  ( )00
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0V

[Fe(mtz)6].(BF4)2 

Fe[Co(CN)6] 0V

Matsuda et al. Phys. Rev B79, 172302 (2009)

Margadonna et al., J. Am. Chem. Soc. 126, 15390 (2004)

Kusz et al. J Appl Cryst., 34, 229, (2001) 





Average structure and local structure

Dynamical Jahn-Teller effect

Vibronic coupling leads to a degeneracy between 

3 nuclear configurations

Potential energy surface

Apparent Cu-N distances
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