SR Instrumentation Pierre Fertey

How to perform a (SR) x-ray diffraction experiment?

Large Facilities X-ray sources: synchrotrons

RSS – 2022- 2023

How to compare X-ray sources?

Brightness:

Intensity Energy (keV) or Wavelength (Å) Divergence s'_x, s'_y (mrad) (1 mrad ~ 0.06°) Source size s_x, s_y (mm) Homogeneity Shape

Photon flux based on the source divergence per $\Delta E/E = 0.1\%$ bandwidth **ph/s/mrad²/0.1%BW**

Brillance:

Photon flux based on the source size and divergence per $\Delta E/E = 0.1\%$ bandwidth

ph/s/mrad²/mm²/0.1%BW

Average Brillance

Synchrotron Radiation

Principle: generation of electromagnetic radiation through the acceleration of a charged particle

Synchrotron Radiation

Bending magnet (dipole source)

Undulator/Wiggler (insertion device)

Synchrotron Radiation: the Machine

Synchrotron Radiation

Insertion device: Wiggler and Undulator N = number of magnetic periods 5 N 5 N 5 N 5 N 5 N amplitude of oscillations K ~ λ_u [cm] B₀ [T] 🗭 gap $\gamma = \frac{1}{\sqrt{1-\beta^2}}$ **Wiggler Regime** K >> 1 $\alpha > -$ In the wiggler regime, the observer sees a train of distinct light pulses, each of them similar to that observable from a bending magnet with the same magnetic field: the pulses add incoherently $I \sim 2N I(wiggle)$ Direction In the undulator regime the angle and the transverse displacement of **Undulator Regime** $\alpha < \frac{1}{\nu}$ K ~ 1 the electron are so small that the observer can see the electron during the full length of the ID and therefore a much longer time $\alpha < 1/\gamma$ interval \rightarrow much thinner spectrum around privileged photon energies trajectoire = undulator harmonics: the pulses add coherently $I \sim N^2 I(wiggle)$ 05/11/2024 CLF2024 - SR Instrumentation 11

Synchrotron Radiation

Polarized beam

Tunable polarisation

Undulator + « phase plate »

Magnetic diffraction ex. magnetic domains, magnetic structures

Storage ring filling modes: (e.g. SOLEIL):

Time resolved experiments
cf. lecture of C. Laulhé on Friday

Coherent beam

Large Facilities X-ray sources: X-FELs

RSS – 2022- 2023 16

X-ray Free Electron Laser

4th generation of synchrotron rings

RSS – 2022- 2023 18

Brillance @ SOLEIL II

20

Coherent flux @ SOLEIL II

Transverse coherence fraction

Optics

22

RSS – 2022- 2023

Optics: examples

Refractive optics

- Compound Refractive Lenses
- Planar lenses
- Kinoform lenses

LEO 1530 Mag - 91 X DIT-70/06 W Signal A - St2 Date 9 Apr 2003 Gen Vacuum - 1.58+809 Terr Lettal No. - L10 1539:21 30 ^{100µm} W0 - 12 mm Output Te - DisglayFile Time: 11:22:33 Nakes Reduction - Line Int, Dene

X-ray resonators

• waveguides

Diffractive optics

- crystals, multilayers, gratings
- Fresnel lenses (Bragg, Laue)
- Photon sieves, pin-holes

Focusing optics

	REFLECTIVE				DIFFRACTIVE	REFRACTIVE
	Kirkpatrick Baez systems		Capillaries	Waveguides	Fresnel Zone plates	Refractive lenses
	mirrors Kirkpatrick Baez, 1948	multilayers Underwood Barbee, 1986	Kreger 1948	Feng <i>et al.</i> 1993	Baez 1952	Snigirev <i>et al.</i> , 1996
E	< 30 keV	< 80 keV	< 20 keV	< 20 keV	< 30 keV (80)	<1 MeV
∆E/E	wide band	10 ⁻²	wide band	10 ⁻² – 10 ⁻³	10 ⁻³ - 10 ⁻⁴	10 ⁻³ - 10 ⁻⁴
min. spot size	< 25 nm	~ 40 nm	50 nm	30 nm	30 nm	50 nm
spot-size	+++	+++	+++	+++	+++	+++
flux achromatic	+++ YES	+++ NO	YES	NO	++ NO	+ NO <i>but</i> f(N,E)
coherence in-line long-f	+ NO YES	+ NO YES	+/- YES NO	+++ YES NO	++ YES YES	+/- YES YES
easy to use clean-spot	+/- +++	+/- ++	++ +++	+/- +	++ +	++ ++

courtesy C. Mocuta 05/11/2024 CLF2024 – SR Instrumentation A.Snigirev et al., C.R.Physique 9 (2008) 57

Detectors

RSS – 2022- 2023 27

Detectors

0D detectors

- Scintillation counters (e.g. Nal:Tl, CsI:Tl, Gd₂O₂S, YAG:Ce, LaBr₃:Ce...)
- Semi-conductor counters (e.g. Si diodes)

- Image plate
- Charge Coupled Device, CMOS
- (Hybrid) Pixels

CCD/CMOS Detectors

Hybrid Pixel Detectors

Photon counting detectors

Integrating detectors

Pixel Detector

(PSI - DESY)

European XFEL

Detectors

	CCD	CMOS	Hybrid pixels
type	charge integrating	charge integrating	photon counting charge integrating
signal out of pixel	e- packet	Voltage	Voltage
signal out of chip	Voltage	Bits (digital)	Bits (digital)
signal out ouf camera	Bits (digital)	Bits (digital)	Bits (digital)
sensor complexity	+	-	
pixel size	+ (~ 50	μm) +	+ (~ 55 µm*)
dynamic range	-	-	++
uniformity (dark/illumination)	+/+	_/+	++/++
speed	-(5Hz)	+(100Hz)	++(a few kHz)
windowing (Region Of Interest)		++	++
antiblooming	-	++	++
continuous scans (shutter free)	-	+	+
dead zones	+	+	

Experimental methods

RSS – 2022- 2023

32

Angular dispersive Diffraction $2d \sin(\theta) = \lambda$

- Single Crystals (cf. lecture of E.-E. Bendeif on Wednesday)
 - Laue method (« white beam »)
 - Monochromatic beam
- Powders (cf. lecture of E. Elkaïm on Wednesday)
- High resolution powders

Energy dispersive Diffraction $d = 6.1999/E[keV] sin(\theta_0)$

Energy dispersive + angular dispersive Diffraction

e.g. CAESAR setup (cf visit of the PSICHE beamline)

Powder method

High resolution powder diffraction

Powder method advantages

- no (« big ») single crystals •
- multi scale approach (pair distribution function cf. lecture of P. Bordet on Thursday)
- identification de phase
- (very) fast
- . . .

- BUT 3D info lost!!! symmetry equivalent Bragg peak superimposed • overlaps of peaks with close d_{hkl} ...

Energy dispersive methods

- constraining sample environment (e.g. studies under Pressure)
- energy resolved detector

Single Crystals

Single Crystals

4-circles diffractometers: mo

monochromatic beam orient the crystal in any directions measure Bragg peak intensities

(the highest number the best, the most accurate the best)

sample: $\dim_{max} < 50 \text{ mm}$

« kappa » geometry

 ω_{K}

20K

 χ = combinaison of ω , κ and ϕ rotations

- shadowing effects reduced
- +++ sample environnments
- +++ 2D detector

Single Crystals: rotating method

- (continuous) rotation of the crystal (shutter-less method)
- simultaneous intensity measurements typically during 0.05-0.1°

Single Crystals: rotating method

Non ambient conditions

RSS – 2022- 2023

43

Non ambient conditions: pressure

Diamond Anvil Cell

- transparent to X-rays/ visible light
- P_{max} ~ 5 300 Gpa*
- small footprint (can be mounted inside a cryostat)
- limited angular aperture

Non ambient conditions: pressure

O5/11/2024 CLF2024 – SR Instrumentatic (config. mesure P)

High Temperature setup \rightarrow 700 K

X

Non ambient conditions: pressure

In situ adjustement of Pressure P: $amb \rightarrow 70$ GPa (Membrane Diamond Anvil Cell) T_{min} : 6K

Non ambient conditions: low/high temperatures

1) Blow a cold/hot gaz (N2, He, dry air) on the sample

11K < T < 1000K

Non ambient conditions: low/high temperatures

2) Use a cryostat/oven

Non ambient conditions: low/high temperatures

pump-probe method (stroboscopic method)

reversible processus time relaxation adapted with excitation frequency

Pump : laser pulse (~ 40 fs) Probe : X-ray pulse (ESRF 100 ps, a few 10 fs@XFEL)

cf. lecture of C. Laulhé on Friday

Brillance : weak intensities

- Complexes structures
- (very) small crystals (< 20 μm)
- Charge density studies (beyong the sphericam model)
- Time resolved experiments (operando)
- Magnetic diffraction...

Low divergence : accuracy of rthe measurements

- Phase identification/separation
- Ab initio powder structure determination

Tunability

- Optimal wavelength (absorption) Resonant (anomalous) diffraction
- Cohérence

Tunable polarisation (nature and/or direction)

Pulsed light

(ultrafast) time resolved experiment (a few 10 fs, ps)

