
B I O L A B A N D C O L L A B O R AT O R S

U S I N G Q U A S A R

B I O L A B



Copyright © 2020 Biolab and Collaborators

published by biolab

tufte-latex.googlecode.com

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in com-
pliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/
LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “as is” basis, without warranties or conditions of any kind, ei-
ther express or implied. See the License for the specific language governing permissions and limitations
under the License.

First printing, October 2020

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0


Contents

Workflows in Quasar 5

Basic data exploration 9

Saving your work 12

Loading data sets 13

Spectral data 15

PCA on spectral data 16

Working with hyperspectral data 18

Preprocessing spectral data 19

Integrals and ratios 20

Classification 21

Classification Trees 22

Naive Bayes 25

Classification Accuracy 26

How to Cheat 27



4

Random Forests 30

Cross-Validation 31

Hierarchical Clustering 32

Animal Kingdom 34

Classification of Spectra 35

Clustering Spectral Images 37

Bibliography 39

Index 40



Workflows in Quasar

Quasar workflows consist of components that read, process and
visualize data. We call them “widgets”. Widgets are placed on a
drawing board (the “canvas”). Widgets communicate by sending
information along a communication channel. Output from one
widget is used as input to another.

A simple workflow with two con-
nected widgets and one widget with-
out connections. The outputs of a
widget appear on the right, while the
inputs appear on the left.

We construct workflows by dragging widgets onto the canvas
and connecting them by drawing a line from the transmitting wid-
get to the receiving widget. The widget’s outputs are on the right
and the inputs on the left. In the workflow above, the File widget
sends data to the Data Table widget.



6 using quasar

Start by constructing a workflow that consists of a File widget,
two Scatter Plot widgets and two Data Table widgets:

Workflow with a File widget that reads
data from disk and sends it to the
Scatter Plot and Data Table widget.
The Data Table renders the data in
a spreadsheet, while the Scatter Plot
visualizes it. Selected data points from
the plot are sent to two other widgets:
Data Table (1) and Scatter Plot (1).

The File widget reads data from your local disk. Open the File
widget by double clicking its icon. Quasar comes with several
pre-loaded data sets. From these (“Browse documentation data
sets. . . ”), choose brown-selected.tab, a yeast gene expression data set.

Quasar workflows often start with
a File widget. The brown-selected
data set comprises of a 186 rows
(genes) and 81 columns. Out of the 81
columns, 79 contain gene expressions
of baker’s yeast under various condi-
tions, one column (marked as a “meta
attribute”) provides gene names, and
one column contains the “class” value
or gene function.

After you load the data, open the other widgets. In the Scatter
Plot widget, select a few data points and watch as they appear in
widget Data Table (1). Use a combination of two Scatter Plot wid-
gets, where the second scatter plot shows a detail from a smaller
region selected in the first scatter plot.

The following is more of a side note, but it won’t hurt. Namely,
the scatter plot for a pair of random features does not provide
much information on gene function. Does this change with a dif-



workflows in quasar 7

ferent choice of feature pairs in the visualization? Rank projections
(the button on the top left of the Scatter Plot widget) can help you
find a good feature pair. How do you think this works? Could the
suggested pairs of features be useful to a biologist?

Scatter Plot and Ranking

We can connect the output of the Data Table widget to the Scat-
ter Plot widget to highlight the chosen data instances (rows) in the
scatter plot.

In this workflow, we have switched
on the option “Show channel names
between widgets” in File/Preferences.

How does Quasar distinguish between the primary data source
and the data selection? It uses the first connected signal as the
entire data set and the second one as its subset. To make changes
or to check what is happening under the hood, double click on the
line connecting the two widgets.



8 using quasar

The rows in the data set we are exploring in this lesson are gene
profiles. We could perhaps use widgets from the Bioinformatics
add-on to get more information on the genes we selected in any of
the Quasar widgets.

Quasar comes with a basic set of

widgets for data input, preprocessing,

visualization and modeling. For

other tasks, like text mining, network

analysis, and bioinformatics, there

are add-ons. Check them out by

selecting Add-ons... from the Options

menu.



Basic data exploration

Let us consider another problem Let us consider another
problem, this time from clinical medicine. We will dig for some-
thing interesting in the data and explore it a bit with visualization
widgets. You will get to know Quasar better, and also learn about
several interesting visualizations.

We will start with an empty canvas; to clean it from our previous
lesson, use either File/New or select all the widgets and remove
them (use the backspace/delete key, or Cmd-backspace if you are
on Mac).

Now again, add the File widget and open another documenta-
tion data set: heart_disease. How does the data look like?

A simple workflow to inspect the
loaded dataset.

Let us check whether common visualizations tell us anything
interesting. (Hint: look for gender differences. These are always
interesting and occasionally even real.)

Quick check with common statistics
and other visualization widgets.



10 using quasar

Data can also be split by the value of features—in this case—the
gender.

The two Distributions widgets get
different data: the upper gets the se-
lected rows and the lower gets the rest.
Double-click the connection between
the widgets to access setup dialog, as
you’ve learned in the previous lesson.

In the Select Rows widget, we select the female patients. You can
also add other conditions. Selection of data instances provides a
powerful combination with visualization of data distribution. Try
having at least two widgets open at the same time and explore the
data.

Select Rows and Distributions widget

There are two less known — but great — visualizations for ob-
serving interactions between features.

Mosaic display shows a rectangle split into columns with widths
reflecting the prevalence of different types of chest pain. Each col-
umn is then further split vertically according to gender distribu-
tions within the column. The resulting rectangles are split again
horizontally according to age group sizes. Within the resulting
bars, the red and blue areas represent the outcome distribution for
each group and the tiny strip to the left of each shows the overall
distribution.



basic data exploration 11

What can you read from this diagram?

You can play with the widget by trying
different combinations of 1-4 features.

Another visualization, Sieve diagram also splits a rectangle hor-
izontally and vertically, but with independent cuts, so the areas
correspond to the expected number of data instances if the ob-
served variables were independent. For instance, 1/4 of patients
are older than 60, and 1/3 of patients are female, so the area of
the bottom right rectangle is 1/12 of the total area. With roughly
300 patients, we would expect 1/12 × 300 = 25 older women in our
data. As a matter of fact, there are 34. Sieve diagram shows the dif-
ference between the expected and the observed frequencies by the
grid density and the color of the field.

See the Score Combinations button?
Guess what it does? And how it scores
the combinations? (Hint: there are
some Greek letters at the bottom of the
widget.)



Saving your work

At the end of a lesson, your workflow may look like this:

A fairly complex workflow that you
would want to share or reuse at a later
time.

You can save this processing workflow, otherwise called "Schema"
using the File/Save menu and share it with your colleagues. Just
don’t forget to put the data files in the same directory as the file
with the workflow.

Widgets also have a Report button in their bottom status bar,
which you can use to keep a log of your analysis. When you find
something interesting, just click it and the graph will be added toClicking on a section of the report

window allows you to add a comment. your log. You can also add reports from the widgets on the path to
this one, to make sure you don’t forget anything relevant.

The report window (left) and the
additional text input box (top).

You can save the report as HTML or PDF, or a report file that
includes all workflow related report items that you can later open
in Orange. In this way, you and your colleagues can reproduce your
analysis results.



Loading data sets

The data sets we have worked with in the previous lesson
come with the Quasar installation. Quasar can read data from
many file formats which include tab and comma separated and
Excel files. To see how this works, let’s prepare a data set (with
school subjects and grades) in Excel and save it on a local disk.

Make a spreadsheet in Excel with
the numbers shown on the left. Of
course, you can use any other editor,
but remember to save your file in the
comma separated values (*.csv) format.

In Quasar, we can use, for example, the File widget to load this
data set.

The File widget allows you to select
a local file or even paste a URL to
a Google Spreadsheet. In the Info
box, you will see a quick summary
about the data you loaded. By double
clicking the fields, you can also edit
the types of entries and their role, that
will be relevant for further processing.

Looks good! Quasar has correctly guessed that student names
are character strings and that this column in the data set is special,
meant to provide additional information and not to be used for any
kind of modeling (more about this in the upcoming lectures). All
other columns are numeric features.



14 using quasar

It is always good to check if all the data was read correctly. Now,
you can connect the File widget with the Data Table widget,

Make the simple workflow shown on
the right.

and double click on the Data Table to see the data in a spreadsheet
format. Nice, everything is here.

The Data Table widget shows the
loaded data set, you can select rows,
which will appear on the output of
the widget. It is also possible to do
simple data visualizations. Explore the
functionalities!

Instead of using Excel, we could also use Google Sheets, a free
on-line spreadsheet alternative. Then, instead of finding the file on
the local disk, we would enter its URL address to the File widget
URL entry box.

Quasar’s legacy native data format is a tab-delimited text file
with three header rows. The first row lists the attribute names, the
second row defines their type (continuous, discrete, time and string,
or abbreviated c, d, t, and s), and the third row an optional role
(class, meta, weight, or ignore).

There is more to input data formatting and loading. If you
would really like to dive in for more, check out the documentation
page on Loading your Data, or a video tutorial on this subject.

https://orange-visual-programming.readthedocs.io/loading-your-data/index.html
https://www.youtube.com/watch?v=MHcGdQeYCMg


Spectral data

Your first spectroscopy workflow!

Let’s make the small workflow shown on the right and open
the “Liver spectroscopy” data set from Quasar’s Datasets widget. In
a Data Table, each row represents a spectrum. For the liver dataset,
all columns, except the class column, describe absorbance at a spe-
cific wavenumber. Their column names must be numbers, other-
wise Quasar’s spectral tools will just enumerate them, starting from
0.

The Datasets widget provides data for
training and testing purposes. The
files are stored on a server and to use
it, you need a working internet con-
nection, but after you accessed them,
they are stored on your computer for
off-line use.

Connect the data to a Spectra widget from the Spectroscopy

toolbox. To see the graph below, choose the feature for coloring in
the top-left Menu (or click on the graph and press “c”).

The Spectra widget and it’s options.
Try to use keyboard shortcuts on the
right for frequent actions.



PCA on spectral data

In this lesson we will explore the capabilities of
Quasar for principal component analysis (PCA) on
spectroscopy data. As usual, we will use the Liver
Spectroscopy dataset. Connect Datasets to the PCA
widget, choose the first 5 principal components and
then connect PCA’s default output, “Data”, into the
Scatter Plot.

We see that the first two principal components
separate majority compounds in that part of the
tissue well.

We chose not to normalize variables in
PCA. Why?

The curve under the cursor is highlighted. A tooltip will appear
after some time. If clicked, the curve will be selected.

To see what different principal components
represent, connect PCA’s “Components” out-
put (be careful, PCA has 4 outputs) into Spec-
tra. Wondering which principal component is
highlighted in the following screenshot? Wait
for the tooltip...



pca on spectral data 17

Let’s extend our workflow. If we connect the PCA (“Transformed
Data” output) to Spectra, we can see each transformed spectrum on
a line plot. As we can see, some classes have outliers.

To find out more about a particular
outlier, we can select it in the Spectra
widget: move your mouse cursor to
a curve—it will be highlighted—-and
click it. The selected curve changes to a
dotted line and is sent to the output.

Then, connect the Spectra widget
to the Scatter Plot and the Spectra (1)
widgets’ “Data Subset” inputs; these
widgets will need two inputs to func-
tion as shown, the subset coming from
the selection in Spectra and the whole
data set. Now we can see the selected
outlier in the original space (Spectra
(1) widget) and in the space of principal components (Scatter Plot),
both in the context of all spectra from the data set.

The selected spectrum’s curve on the
left is drawn with a dashed line and
the corresponding original spectrum
is highlighted on the right. The Scatter
Plot shows the position of the selected
spectrum in the PCA space.



Working with hyperspectral data

We can also visualize hyperspectral data sets. In the Datasets wid-
get you will find “Liver cirrhosis” data. Connecting to a Data Table,
you will see that each spectrum contains information (in meta
variables) about image positions (map_x and map_y). Quasar can
recognize the image positioning features from the file automati-

cally. Otherwise, you could set them manually in the image Menu
under the Axis x and Axis y options.

The HyperSpectra widget has two main
parts, it can show image (top) and a
spectra (bottom). Explore the options
on both plots in their Menus and the
left panel, where you can change the
visualization parameters.

By default, the image is the 2D representation of the whole in-
tegral of each spectrum. To change it, move the red lines on the
spectrum plot. With the dropdown menu on the left panel you can
select other representations.

To view the plotted integrals, set the
spectra display to show individual
spectra and click a spectrum. Integrals
for the selected spectrum are shaded.



Preprocessing spectral data

Preprocessing spectra is a very important step of data
analysis. Quasar has a widget, Preprocessing, dedicated to different
methods. The spectra from the “Liver cirrhosis” data set could use
some preprocessing. There is some scattering visible and perhaps
there are some artifacts due to sample thickness varying slightly.

You can add preprocessing steps from
the top dropdown menu of the left
panel. Then, it is possible to drag
them up and down to change their
order. Each preprocessor has its own
parameters. In the example here we
show how the Baseline correction
is done: you can simply change the
baseline points by dragging the red
lines in the top spectrum panel. Each
stage can be previewed by clicking the
small triangle.

Let’s see the result of our preprocessing in a HyperSpectra widget.

The preprocessed data in HyperSpectra.
Did we gain anything? To investigate
why the blue island disappeared, click
on a pixel in it to see its spectrum.



Integrals and ratios

Peak integration is an essential element of spec-
troscopy for measuring concentrations, spectral
contributions, etc.

To display a preview, select a spectrum and enable preview of individual inte-
grals with their play buttons.

To compute integrals, we use
the Integrate Spectra widget. Let’s
compute the ratios of two integrals
to establish an internal standard
in our dataset. Add two integrals
and then feed them into the Fea-
ture Constructor (Edit Domain is
optional—we use it to simplify
column names). In Feature Con-
structor, we can create new numeric
features with Python expressions.
To work with Feature Construc-
tor more easily, uncheck “Output
as metas”, which will replace the
original spectra with their integrals
(and reduce the number of columns
in your data). We can use Feature
Constructor whenever we would like

to create a new column from existing data.

We added a Numeric feature, the ratio
of I1 and I2 called R1.

The produced data can be inspected by connecting other widgets.



Classification

We have seen the iris data before. We wanted to predict varieties We call the variable we wish to predict
a target variable, or an outcome or, in
traditional machine learning termi-
nology, a class. Hence we talk about
classification, classifiers, classification
trees...

based on measurements—but we actually did not make any predic-
tions. We observed some potentially interesting relations between
the features and the varieties, but have never constructed an actual
model.

Let us create one now.

Something in this workflow is concep-
tually wrong. Can you guess what?

The data is fed into
the Tree widget, which
infers a classification
model and gives it to the
Predictions widget. Note
that unlike in our past
workflows, in which the
communication between
widgets included only
the data, we here have
a channel that carries a
predictive model.

The Predictions widget also receives the data from the File wid-
get. The widget uses the model to make predictions about the data
and shows them in the table.

How correct are these predictions? Do we have a good model?
How can we tell?

But (and even before answering these very important questions),
what is a classification tree? And how does Orange create one? Is
this algorithm something we should really use?

So many questions to answer!



Classification Trees

In the previous lesson, we used a classification tree, one of theClassification trees were hugely pop-
ular in the early years of machine
learning, when they were first inde-
pendently proposed by the engineer
Ross Quinlan (C4.5) and a group of
statisticians (CART), including the
father of random forests Leo Brieman.

oldest, but still popular, machine learning methods. We like it since
the method is easy to explain and gives rise to random forests, one
of the most accurate machine learning techniques (more on this
later). So, what kind of model is a classification tree?

Let us load iris data set, build a tree (widget Tree) and visualize it
in a Tree Viewer.

We read the tree from top to
bottom. Looks like the column
petal length best separates the iris
variety setosa from the others,
and in the next step, petal width
then almost perfectly separates
the remaining two varieties.

Trees place the most useful
feature at the root. What would
be the most useful feature? The
feature that splits the data into
two purest possible subsets. It
then splits both subsets further,
again by their most useful fea-
tures, and keeps doing so until

it reaches subsets in which all data belongs to the same class (leaf
nodes in strong blue or red) or until it runs out of data instances to



classification trees 23

split or out of useful features (the two leaf nodes in white).
We still have not been very explicit about what we mean by “the

most useful” feature. There are many ways to measure the quality
of features, based on how well they distinguish between classes.
We will illustrate the general idea with information gain. We can
compute this measure in Orange using the Rank widget , which The Rank widget can be used on

its own to show the best predicting
features. Say, to figure out which genes
are best predictors of the phenotype in
some gene expression data set.

estimates the quality of data features and ranks them according to
how informative they are about the class. We can either estimate
the information gain from the whole data set, or compute it on data
corresponding to an internal node of the classification tree in the
Tree Viewer. In the following example we use the Sailing data set.

The Datasets widget is set to load the
Sailing data set. To use the second
Rank, select a node in the Tree Viewer.

Besides the information gain, Rank displays several other mea-
sures (including Gain Ratio and Gini), which are often quite in
agreement and were invented to better handle discrete features
with many different values.

For the whole Sailing data set, Company
is the most class-informative feature
according to all measures shown.



24 using quasar

Here is an interesting combination of a Tree Viewer and a Scatter
Plot. This time, use the Iris data set. In the Scatter Plot, we first
find the best visualization of this data set, that is, the one that best
separates the instances from different classes. Then we connect the
Tree Viewer to the Scatter Plot. Data instances (particular irises) from
the selected node in the Tree Viewer are shown in the Scatter Plot.

Careful, the Data widget needs to be
connected to the Scatter Plot’s Data
input, and Tree Viewer to the Scatter
Plot’s Data Subset input.

Just for fun, we have included a few other widgets in this work-
flow. In a way, a Tree Viewer behaves like Select Rows, except that
the rules used to filter the data are inferred from the data itself and
optimized to obtain purer data subsets.

In the Tree Viewer we selected the
rightmost node. All data instances
coming to the selected node are
highlighted in Scatter Plot.

Wherever possible, visualizations in Orange are designed to
support selection and passing of the data that applies to it. Finding
interesting data subsets and analyzing their commonalities is a
central part of explorative data analysis, a data analysis approach
favored by the data visualization guru Edward Tufte.



Naive Bayes

Naive Bayes is also a classification method. To see how naive Bayes Naive Bayes assumes class-wise
independent features. For a data set
where features would actually be
independent, which rarely happens in
practice, the naive Bayes would be the
ideal classifier.

works, we will use a data set on passengers’ survival in the Titanic
disaster of 1912. The Titanic data set describes 2201 passengers,
with their tickets (first, second, thirds class or crew), age and gen-
der.

We inspect naive Bayes models with the Nomogram widget.
There, we se a scale ‘Points’ and scales for each feature. Below
we can see probabilities. Note the ‘Target class’ in upper left cor-
ner. If it is set to ‘yes’, the widget will show the probability that a
passenger survived.

The nomogram shows that gender was the most important fea-
ture for survival. If we move the blue dot to ‘female’, the survival
probability increases to 73%. Furthermore, if that woman also trav-
elled in the first class, she survived with probability of 90%. The
bottom scales show the conversion from feature contributions to
probability.

According to the probability theory
individual contributions should be
multiplied. Nomograms get around
this by working in a log-space: a
sum in the log-space is equivalent to
multiplication in the original space.
Therefore nomograms sum contribu-
tions (in the log-space) of all feature
values and then convert them back to
probability.



Classification Accuracy

Now that we know what classification trees are, the next question
is what is the quality of their predictions. For beginning, we need
to define what we mean by quality. In classification, the simplest
measure of quality is classification accuracy expressed as the pro-accuracy = #{correct}

#{all}

portion of data instances for which the classifier correctly guessed
the value of the class. Let’s see if we can estimate, or at least get
a feeling for, classification accuracy with the widgets we already
know.

Let us try this schema with the iris
data set. The Predictions widget outputs a
data table augmented with a column that
includes predictions. In the Data Table wid-
get, we can sort the data by any of these
two columns, and manually select data
instances where the values of these two
features are different (this would not work
on big data). Roughly, visually estimating
the accuracy of predictions is straightfor-
ward in the Distribution widget, if we set
the features in view appropriately.

For precise statistics of correctly and
incorrectly classified examples open the Confusion Matrix widget.

The Confusion Matrix shows
3 incorrectly classified exam-
ples, which makes the accuracy
(150 � 3)/150 = 98%.



How to Cheat

At this stage, the classification tree looks

This lesson has a strange title and
it is not obvious why it was chosen.
Maybe you, the reader, should tell us
what does this lesson have to do with
cheating.

very good. There’s only one data point
where it makes a mistake. Can we mess
up the data set so bad that the trees will
ultimately fail? Like, remove any existing
correlation between features and the class?
We can! There’s the Randomize widget with class shuffling. Check
out the chaos it creates in the Scatter Plot visualization where there
were nice clusters before randomization!

Left: scatter plot of the Iris data set
before randomization; right: scatter
plot after shuffling 100% of rows.Fine. There can be no classifier that can model this mess, right?

Let’s make sure.

And the result? Here is a screenshot of
the Confusion Matrix.

Most unusual. Despite shuffling all the
classes, which destroyed any connection
between features and the class variable,
about 80% of predictions were still correct.



28 using quasar

Can we further improve accuracy on the shuffled data? Let us
try to change some properties of the induced trees: in the Tree wid-
get, disable all early stopping criteria.

After we disable 2–4 check box in
the Tree widget, our classifier starts
behaving almost perfectly.

Wow, almost no mistakes now. How is this possible? On a class-
randomized data set?

In the build tree, there are 75 leaves. Remember, there are only
150 rows in the Iris data set.

To find the answer to this riddle, open
the Tree Viewer and check out the tree.
How many nodes does it have? Are there
many data instances in the leaf nodes?

Looks like the tree just memorized
every data instance from the data set. No
wonder the predictions were right. The
tree makes no sense, and it is complex
because it simply remembered everything.

Ha, if this is so, if a classifier remem-
bers everything from a data set but with-
out discovering any general patterns, it
should perform miserably on any new
data set. Let us check this out. We will
split our data set into two sets, training

and testing, train the classification tree on the training data set and
then estimate its accuracy on the test data set.

Connect the Data Sampler widget
carefully. The Data Sampler splits the
data to a sample and out-of-sample
(so called remaining data). The sample
was given to the Tree widget, while
the remaining data was handed to the
Predictions widget. Set the Data Sampler
so that the size of these two data sets is
about equal.

Let’s check how the Confusion Matrix looks after testing the clas-
sifier on the test data.

The first two classes are a complete fail. The predictions for
ribosomal genes are a bit better, but still with lots of mistakes. On
the class-randomized training data our classifier fails miserably.



how to cheat 29

Finally, just as we would expect.

Confusion matrix if we estimate
accuracy on a data set that was not
used in learning.

We have just learned that we need to train the classifiers on the
training set and then test it on a separate test set to really measure
performance of a classification technique. With this test, we can
distinguish between those classifiers that just memorize the training
data and those that actually learn a general model.

Learning is not only memorizing. Rather, it is discovering pat-
terns that govern the data and apply to new data as well. To esti-
mate the accuracy of a classifier, we therefore need a separate test
set. This estimate should not depend on just one division of the
input data set to training and test set (here’s a place for cheating
as well). Instead, we need to repeat the process of estimation sev-
eral times, each time on a different train/test set and report on the
average score.



Random Forests

Random forests, a modeling technique
introduced in 2001, is still one of the best
performing classification and regression
techniques. Instead of building a tree
by always choosing the a feature that
seems to separate best at that time, it
builds many trees in slightly random
ways. Therefore the induced trees are
different. For the final prediction the trees

vote for the best class.

The Pythagorean Forest widget shows
us how random the trees are. If we
select a tree, we can observe it in a Tree
Viewer.

There are two sources of randomness: (1) training data is sam-
pled with replacement, and (2) the best feature for a split is chosen
among a subset of randomly chosen features.

Which features are the most important? The creators of random
forests also defined a procedure for computing feature importances
from random forests. In Orange, you can use it with the Rank wid-
get.

Feature importance according to
two univariate measures (gain ratio
and gini index) and random forests.
Random forests also consider combina-
tions of features when evaluating their
importance.



Cross-Validation

Estimating the accuracy may depend on a particular split
of the data set. To increase robustness, we can repeat the
measurement several times, each time choosing a different
subset of the data for training. One such method is cross-
validation. It is available in Orange through the Test and
Score widget.

Note that in each iteration, Test and Score will pick a part
of the data for training, learn the predictive model on this
data using some machine learning method, and then test
the accuracy of the resulting model on the remaining, test
data set. For this, the widget will need on its input a data
set from which it will sample the data for training and testing,
and a learning method which it will use on the training data set
to construct a predictive model. In Orange, the learning method is
simply called a learner. Hence, Test and Score needs a learner on its
input. For geeks: a learner is an object that,

given the data, outputs a classifier. Just
what Test and Score needs.

This is another way to use the Tree widget. In the workflows
from the previous lessons we have used another of its outputs,
called Model; its construction required data. This time, no data is
needed for Tree, because all that we need from it is a Learner.

Cross validation splits the data sets
into, say, 10 different non-overlapping
subsets we call folds. In each iteration,
one fold will be used for testing, while
the data from all other folds will be
used for training. In this way, each
data instance will be used for testing
exactly once.

In the Test and Score widget, the second column, CA, stands for
classification accuracy, and this is what we really care for for now.



Hierarchical Clustering

Say that we are interested in finding clusters in our data. That is,
we would like to identify groups of data instances that are close
together, similar to each other. Consider a simple, two-featured data
set (see the side note) and plot it in the Scatter Plot. How many
clusters do we have? What defines a cluster? Which data instances
should belong to the same cluster? How does the clustering algo-
rithm actually work?

We will introduce clustering with
a simple data set on students and
their grades in English and Algebra.
Load the data set from http://file.
biolab.si/text/grades.tab.

First, we need to define what we mean by “similar”. We will
assume that all our data instances are described (profiled) with
continuous features. One simple measure of similarity is the Eu-
clidean distance. So, we would like to group data instances with
small Euclidean distances.

There are different ways to measure
the similarity between clusters. The
estimate we have described is called
average linkage. We could also esti-
mate the distance through the two
closest points in each clusters (single
linkage), or through the two points
that are furthest away (complete
linkage).

Next, we need to define a clustering algorithm. Say that we start
with each data instance being its own cluster, and then, at each
step, we join the clusters that are closest together. We estimate
the distance between the clusters with, say, the average distance
between all their pairs of data points. This algorithm is called hier-
archical clustering.

http://file.biolab.si/text/grades.tab
http://file.biolab.si/text/grades.tab


hierarchical clustering 33

One possible way to observe the results of clustering on our
small data set with grades is through the following workflow:

Couldn’t be simpler. Load the data, measure the distances, use
them in hierarchical clustering, and visualize the results in a scatter
plot. The Hierarchical Clustering widget allows us to cut the hier-
archy at a certain distance score and output the corresponding
clusters:



Animal Kingdom

Your lecturers spent a substantial part of their youth admiring a
particular Croatian chocolate called Animal Kingdom. Each choco-
late bar came with a card—a drawing of some (random) animal,
and the associated album made us eat a lot of chocolate.

Funny stuff was we never understood the order in which the
cards were laid out in the album. We later learned about taxonomy,
but being more inclined to engineering we never mastered learning
it in our biology classes. Luckily, there’s data mining and the idea
that taxonomy simply stems from measuring the distance between
species.

Hierarchical clustering works fast for smaller data sets. But for
bigger ones it fails. Simply, it cannot be used. Why?

Here we use zoo data (from the documen-
tation data sets) with attributes that report
on various features of animals (has hair, has
feathers, lays eggs). We measure the distance
and compute the clustering. Animals in this
data set are annotated with type (mammal,
insect, bird, and so on). It would be cool to
know if the clustering re-discovered these

groups of animals.
To split the data into clusters, let us manually set a threshold by

dragging the vertical line left or right in the visualization. Can you
say what is the appropriate number of groups?

What is wrong with those mammals?
Why can’t they be in one single clus-
ter? Two reasons. First, they represent
40% of the data instances. Second, they
include some weirdos. Who are they?



Classification of Spectra

Let’s open the collagen data set again and
see how well can logistic regression predict
its four classes. Straightforward, right? Con-
nect Datasets, Logistic Regression, Predictions,
Confusion Matrix and that’s it. We would also like to do some spec-
tral processing (we will only keep the columns for wavenumbers
between 1500 cm�1and 1800 cm�1).

The Spectra widget shows wrong
predictions for the DNA class.

Let’s not forget that it is pointless to predict for the same data
as we used for learning. We could either use a Data Sampler and
connect its Sample output to Preprocess Spectra and Remaining
output to Predictions, or obtain predictions from the Test and Score
widget. Confusion Matrix now shows the mistakes of the model
(scored with cross-validation). We can select them and inspect them
further in a Spectra widget. Here we colored them by the predicted
class (see the Menu).



36 using quasar

But how does the
model make its deci-
sions? We already in-
spected a different model,
classification tree, where
each node represents a
decision on a value of a
column. Logistic regression
works differently. On the
training data it computes
weights for all columns

(wavelengths), which are then used for prediction, where values
are multiplied with weights. To see the weights, connect Logistic
Regression to a Data Table.

We get a table that is hard to under-
stand. What if we visualize it? First,
Transpose the data. Then, use Select
Columns to make the visualization
prettier: in the widget remove the in-
tercept.

Now, open Logistic Regression and
try changing its parameters. Observe
the effect on the weights.



Clustering Spectral Images

We have already seen hierarchical clustering. Another clustering
algorithm, k-Means, is much faster for data with lots of rows, like
images, which contain a row (a spectrum) for each pixel. Still, for
the liver-cirrhosis data, both approaches are fast. Here, we use k-
Means with k=3 clusters.

The Spectra widget shows wrong
predictions for the DNA class.

We see no meaningful
clusters. Therefore, we
need to preprocess the
data. If we do it well,
we see that a cluster
corresponds to the back-
ground. We could remove it with the Select Rows widget.

The Spectra widget shows wrong
predictions for the DNA class.


	Workflows in Quasar
	Basic data exploration
	Saving your work
	Loading data sets
	Spectral data
	PCA on spectral data
	Working with hyperspectral data
	Preprocessing spectral data
	Integrals and ratios
	Classification
	Classification Trees
	Naive Bayes
	Classification Accuracy
	How to Cheat
	Random Forests
	Cross-Validation
	Hierarchical Clustering
	Animal Kingdom
	Classification of Spectra
	Clustering Spectral Images
	Bibliography
	Index

