Sub-ns and sub-ps structural dynamics:

a view from time-resolved X-ray diffraction

Claire Laulhé

SOLEIL synchrotron - CRISTAL beamline

Paris-Saclay University (Psud)

Sub-ns and sub-ps structural dynamics: a view from time-resolved X-ray diffraction

I. Scientific motivations

II. Pump-probe diffraction

- Principle
- Time resolution & synchronization
- Short X-ray pulse sources
- Specific geometrical constraints

III. Examples

- Photo-induced phase transition in $K_{0.3}MoO_3$
- Ultrafast bond formation in a Gold(I) trimer

Sub-ns and sub-ps structural dynamics: a view from time-resolved X-ray diffraction

I. Scientific motivations

- II. Pump-probe diffraction
 - Principle
 - Time resolution & synchronization
 - Short X-ray pulse sources
 - Specific geometrical constraints

III. Examples

- Photo-induced phase transition in $K_{0.3}MoO_3$
- Ultrafast bond formation in a Gold(I) trimer

Structural dynamics in physics

• Crystals at thermodynamic equilibrium

Atomic displacements : sum of normal modes $\overrightarrow{u_n}(\vec{r},t) = \sum_{\lambda, \|\vec{k}\|} u_n(\lambda, \vec{k}) \vec{e}_{\lambda, \vec{k}} e^{i[\omega(\lambda, \vec{k})t - \vec{k}.\vec{r}]}$

Transverse mode

→ Experiments in the <u>frequency domain</u>: inelastic neutron scattering, Raman scattering...

Photo-induced structural dynamics

→ Experiments in the time domain: time-resolved pump-probe diffraction

Structural dynamics in physics

Exploration of the potential in photo-excited states Novel states of matter Ultrafast control of the physical properties

Structural dynamics in biology

• Protein dynamics :

Study of the fastest dynamics: Reaction mechanisms have to be triggered at the same time within ps !

\rightarrow Photo-induced dynamics

<image>

Function cycles activated by photo-dissociation

Microscopic understanding of the biological functions

Structural dynamics in chemistry

• Photo-activated chemical reaction processes

S. Jun et al., Phys. Chem. Chem. Phys. 12, 11536-11547 (2010)

a)

0.010

0.008

6

Molecular crystals

Sub-ns and sub-ps structural dynamics: a view from time-resolved X-ray diffraction

I. Scientific motivations

II. Pump-probe diffraction

- Principle
- Time resolution & synchronization
- Short X-ray pulse sources
- Specific geometrical constraints
- III. Examples
 - Photo-induced phase transition in $K_{0.3}MoO_3$
 - Ultrafast bond formation in a Gold(I) trimer

Time-resolved pump-probe diffraction

Following photo-induced structural changes as a function of time

• One pump-probe cycle \leftrightarrow diffraction signal too low !

- $\rightarrow N$ pump-probe cycles needed for each Δt : study of reversible processes
- ightarrow Irreversible processes : liquid jets or serial crystallography at X-FELs
- A crucial parameter : control of Δt [quality of synchronization]

I. Schlichting, IUCrJ **2**, 246–255 (2015) V. Panneels *et al.*, Structural Dynamics **2**, 041718 (2015) T. R. M. Barends, Science **350**, 445 (2015)

Synchronization scheme

•Commercially available Ti:Sa lasers (1990 \rightarrow): ~ 40 fs pulses @ 800 nm [1.55 eV]

X-ray pulse sources

• Few ps pulses from synchrotrons: low- α mode

Normal operation:

- Optics optimized for a low-emittance electron beam
- Dispersion of $E_{e^-} \Longrightarrow$ dispersion of e^- revolution period
- Elongated e⁻ bunches, longer X-ray pulses

 \rightarrow User operation at BESSY, SOLEIL, DIAMOND

X-ray pulse sources

• 100 fs X-ray pulses: X-FELs (2009 \rightarrow)

- Short electron pulses produced by a laser-driven electron gun [N electrons]
- Propagation in long undulators (100 m) [M poles]
- Electron beam bunching
 → Coherent emission of all the electrons

$I \propto N^2 \times M^2$: very high flux 80 fs hard X-ray pulses

Time-resolved pump-probe diffraction: laser-based sources

• X-ray plasma sources (1994 \rightarrow)

- Laser pulse onto a copper target
- Indirect ionization of Cu atoms
- Emission of X-rays with $K_{\alpha}(Cu)$ wavelength [λ = 1.54 Å]

10³ ph./pulse @1kHz 100 fs duration

F. Zamponi, Appl. Phys. A 96, 51-58 (2009)
A. Rousse *et al.*, PRE 50, 2200 (1994)
A. Rousse *et al.*, Nature 410, 65 (2001)

• Ultrafast electron diffraction (2003 \rightarrow)

- Frequency-tripled Ti:Sa laser pulse ($\lambda = 266 \text{ nm}$)
- Pulse-driven photocathode \rightarrow photoemission
- Acceleration to \sim 60 keV [$\lambda \sim$ 0.05 Å]

10³ e⁻/pulse @1kHz 300 fs duration

W.-X. Liang *et al.*, Chinese Phys. Lett. **26**, 020701 (2009) R. Srinivasan *et al.*, Helvetica Chimica Acta **86**, 1761-1799 (2003)

Pump-probe diffraction : typical photon or electron fluxes

Synchrotrons [repetition rate 1 kHz]			
• 80 ps X-ray pulses	$\bigcirc\bigcirc\bigcirc\bigcirc$	10⁶ photons/pulse $\Delta E/E \sim 10^{-4}$	10 ⁹ ph/s
• Few ps X-ray pulses (low- α)		10⁴ photons/pulse $\Delta E/E \sim 10^{-3}$	10 ⁷ ph/s
• 100 fs X-ray pulses (femto-slicing)	A CONTRACTOR OF A CONTRACTOR O	10³ photons/pulse $\Delta E/E \sim 8.10^{-3}$	10 ⁶ ph/s
Laser-based sources [repetition rate 1 kHz]			
• 100 fs X-ray pulses (plasma source)		10 ³ photons/pulse $\Delta E/E \sim 10^{-4}$	10 ⁶ ph/s
• 300 fs electron pulses		10 ³ electrons/pulse	10 ⁶ e ⁻ /s
X-ray free electron lasers [repetition rate 100 Hz]			
• 80 fs X-ray pulses		10¹¹ photons/pulse $\Delta E/E \sim 10^{-3}$	10 ¹³ ph/s
		ITA A	

Time resolved X-ray diffraction: experimental facts

• X-rays and IR photons: differing penetration depths !

[Typical values for hard condensed matter, 7 keV X-ray photons]

- Electron diffraction: sample is usually thinner than δ_{Laser}

Time resolved X-ray diffraction: experimental facts

• X-rays and IR photons: differing penetration depths !

[Typical values for hard condensed matter, 7 keV X-ray photons]

• Grazing incidence geometry, pump & probe beams collinear

Time-resolved diffraction setup installed at CRISTAL (SOLEIL synchr.)

Ti:Sa oscillator + amplifier

λ = 800 nm, 40 fs FWHM 500 μJ/pulse @10kHz, 5 mJ/pulse @1kHz

Sub-ns and sub-ps structural dynamics: a view from time-resolved X-ray diffraction

- I. Scientific motivations
- II. Pump-probe diffraction
 - Principle
 - Time resolution & synchronization
 - Short X-ray pulse sources
 - Specific geometrical constraints

III. Examples

- Photo-induced phase transition in $\rm K_{0.3}MoO_{3}$
- Ultrafast bond formation in a Gold(I) trimer

Atomic structure of blue bronze $(K_{0.3}MoO_3)$

• A quasi-one-dimensional conductor...

 σ_b = 3 10² [Ω .cm]⁻¹

...which undergoes a transition to a charge density wave phase at 183 K

J. Graham and A.D. Wadsley, Acta Cryst. **20**, 93 (1966) G. Grüner, "Density waves in solids"

Formation of a charge density wave - Peierls model

• A metal-insulator transition driven by a periodic lattice distortion

Ultrafast light control of the physical properties of CDW compounds ?

e-ph coupling... Does photo-excitation affect the CDW structural modulation ? On which timescale ?

- Photo-induced phase transitions: an <u>out-of-equilibrium</u> dynamical process
 - \rightarrow Control of physical properties on ultrafast timescales (< 1 ps)
 - \rightarrow Discovery of new, intermediate states

Ultrafast light control of the physical properties of CDW compounds ?

Pump-probe diffraction

Photo-induced structural dynamics in CDW coumpounds

Time resolution needed: down to 100 fs [$E_{ph} = \hbar \omega \sim 20 \text{ meV} \Rightarrow T_{osc} \sim 250 \text{ fs}$]

• Use of the synchrotron femto-slicing source at Swiss Light Source

P. Beaud et al., PRL 99 174801 (2007)

Appearance of a charge density wave in blue bronze $(K_{0.3}MoO_3)$

• K_{0.3}MoO₃: satellite peaks @ $(h k l) + (1 q_b \frac{1}{2})$

• Time-dependence of the satellite $\left(1 \left[4-q_b\right] \frac{1}{2}\right)$ - Low fluence

• Time-dependence of the satellite $\left(1 \left[4-q_b\right] \frac{\overline{1}}{2}\right)$ - Higher fluences

• $F = 1 \text{mJ/cm}^2$

- \rightarrow The recovery time of satellite peak intensity increases
- \rightarrow Coherent oscillations: hardly observable

• $F > 1 \text{mJ/cm}^2$

- \rightarrow No recovery of satellite peak intensity within 10 ps
- \rightarrow Oscillation frequency doubled w/r to the low fluence case

Significant changes of the atomic potential surface

T. Huber et al., PRL **113**, 026401 (2014)

• Time-dependence of the satellite $\left(1 \left[4-q_b\right] \frac{1}{2}\right)$ - Higher fluences

• Free energy vs laser excitation $[\eta \propto \text{laser fluence}]$

$$F = F_0 + \frac{1}{2} \left[\eta e^{-\frac{t}{\tau}} - 1 \right] \, u_0^2 + \frac{1}{4} {u_0}^4$$

Equation of motion to be solved:

$$C_{1}\frac{\partial^{2}}{\partial t^{2}}\left[\frac{u_{0}(t)}{u_{0}(t<0)}\right] = -\overrightarrow{grad} F - C_{2}\gamma(t)\frac{\partial}{\partial t}\left[\frac{u_{0}(t)}{u_{0}(t<0)}\right]$$

Non-harmonic motions of atoms

• Time-dependence of the satellite $\left(1 \left[4-q_b\right] \frac{1}{2}\right)$ - Higher fluences

Ultrafast change of atomic potential symmetry

Sub-ns and sub-ps structural dynamics: a view from time-resolved X-ray diffraction

- I. Scientific motivations
- II. Pump-probe diffraction
 - Principle
 - Time resolution & synchronization
 - Short X-ray pulse sources
 - Specific geometrical constraints

III. Examples

- Photo-induced phase transition in $K_{0.3}MoO_3$
- Ultrafast bond formation in a Gold(I) trimer

• [Au(CN)₂-]₃ in aqueous solution

Au(l) : [Xe] 4f¹⁴ 5d¹⁰

• [Au(CN)₂-]₃: photoinduced response

Optical pump-probe spectroscopy:

Discrepancies with ab-initio molecular dynamics simulations

M. Iwamura *et al.*, J. Am. Chem. Soc. **135**, 538-541 (2013)
T. Seki *et al.*, Chem. Sci. **6**, 1491 (2015)
G. Cui *et al.*, Angew. Chem. Int. Ed. **52**, 10281 (2013)

K.H. Kim et al., Nature 518, 385 (2015)

• Radial integration:

• Scattering function *S*(*q*):

$$S(q) = \sum_{\alpha} N_{\alpha} f_{\alpha}^{2} + \sum_{\alpha} \sum_{\beta \neq \alpha} \frac{N_{\alpha} N_{\beta}}{V} f_{\alpha} f_{\beta} \int_{0}^{\infty} [g_{\alpha\beta}(r) - 1] \frac{\sin qr}{qr} 4\pi r^{2} dr$$

 $\rightarrow \alpha, \beta$: atomic species

• Partial pair distribution function $g_{lphaeta}(r)$:

$$g_{\alpha\beta}(r) = \frac{1}{Nc_{\alpha}c_{\beta}} \times \frac{1}{4\pi\rho_0 r^2} \times \sum_{i_{\alpha}} \sum_{i_{\beta}\neq i_{\alpha}} \delta\left(r - r_{i_{\alpha}i_{\beta}}\right)$$

ightarrow Number of $oldsymbol{eta}$ -type atoms at distance r of an lpha-type atom

•
$$S(q) = S(q)_{solute+cage} + S(q)_{solvent}$$

 $a, \beta = H, O$
Dominant term !
 $a, \beta = Au, C, N, H, O$
Dominated by Au-Au contributions
• $\Delta S(q, t) = S(q, t) - S(q, t < 0)$
 $\Delta S(q, t) = \Delta S(q, t)_{Au-Au} + \Delta S(q, t)_{solvent}$
Determined by a separate
solvent heating experiment
• $\Delta S(q, t)_{Au-Au} \stackrel{\text{FT}}{\Rightarrow} \Delta g_{Au-Au}(r, t)$
• $g_{Au-Au}(r, t) = g_{Au-Au}^{0}(r) + \Delta g_{Au-Au}(r, t)$

K.H. Kim et al., Nature 518, 385 (2015)

Thank you !

