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Workflows in Quasar

QUASAR WORKFLOWS consist of components that read, process and
visualize data. We call them “widgets”. Widgets are placed on a
drawing board (the “canvas”). Widgets communicate by sending
information along a communication channel. Output from one
widget is used as input to another.

[ NN ) ) First-workflow.ows
E File widget. Double click Data Table widget. Double
o to open it and select the click the icon to see the
o data set. data in a spreadsheet.
&
Zies The output of
b LL Data Table sends
b ?ut ar;y data
rows) that are
) D - — @ selected in the
widget.
Iz] File Data Table
Af The output of ; This output is not used, hence the
- the File widget. %&Qﬂ?&;&l’he Data dashed line. You can add another
Data Table by clicking on its icon
= from the toolbox on the left;
& N connect the output of Data Table
G The communication to the input of the new Data Table
3} channel. It passes the (1) and check if the selected data
data from the File widget from Data Table are indeed sent
B\ to the Data Table widget. to the downstream widget. This

demo works best if both widgets
are open, meaning their windows
are displayed.
s ™ A widget that has not
been connected to

Scatter Plot any other widget.

A simple workflow with two con-
nected widgets and one widget with-
out connections. The outputs of a
and connecting them by drawing a line from the transmitting wid- widget appear on the right, while the
inputs appear on the left.

We construct workflows by dragging widgets onto the canvas

get to the receiving widget. The widget’s outputs are on the right
and the inputs on the left. In the workflow above, the File widget
sends data to the Data Table widget.
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Workflow with a File widget that reads
data from disk and sends it to the
Scatter Plot and Data Table widget.
The Data Table renders the data in

a spreadsheet, while the Scatter Plot
visualizes it. Selected data points from
the plot are sent to two other widgets:
Data Table (1) and Scatter Plot (1).

Quasar workflows often start with

a File widget. The brown-selected
data set comprises of a 186 rows
(genes) and 81 columns. Out of the 81
columns, 79 contain gene expressions
of baker’s yeast under various condi-
tions, one column (marked as a “meta
attribute”) provides gene names, and
one column contains the “class” value
or gene function.

Start by constructing a workflow that consists of a File widget,
two Scatter Plot widgets and two Data Table widgets:

Bl
D Data Table E

File

e Data Table (1)
o%e

o'

Scatter Plot

.
sge
l..

Scatter Plot (1)

The File widget reads data from your local disk. Open the File
widget by double clicking its icon. Quasar comes with several
pre-loaded data sets. From these (“Browse documentation data
sets...”), choose brown-selected.tab, a yeast gene expression data set.

@ ® File
O File: brown-selected.tab [T & Reload
URL: o
Info
186 instance(s), 79 feature(s), 1 meta attribute(s)
Classification; categorical class with 3 values.
Columns (Double click to edit)
Name Type Role Values
1 alphaO ) numeric feature
2 alpha7 0 numeric feature
3 alpha14 8 numeric feature
4  alpha 21 8 numeric feature
5 alpha 28 8 numeric feature
6 alpha 35 M numeric feature
Browse documentation datasets Apply
2 &

After you load the data, open the other widgets. In the Scatter
Plot widget, select a few data points and watch as they appear in
widget Data Table (1). Use a combination of two Scatter Plot wid-
gets, where the second scatter plot shows a detail from a smaller
region selected in the first scatter plot.

The following is more of a side note, but it won’t hurt. Namely,
the scatter plot for a pair of random features does not provide
much information on gene function. Does this change with a dif-
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ferent choice of feature pairs in the visualization? Rank projections
(the button on the top left of the Scatter Plot widget) can help you
find a good feature pair. How do you think this works? Could the
suggested pairs of features be useful to a biologist?

[ XX ] Scatter Plot
Axis Data
° © ) Proteas
Axisx: [ diauf 2 ® o 00
0.5 (o] © Resp
o . o Q
Axisy: | 0 spo- mid o o Q 9 ° % [ JoX ) Score Plots
Ribo
(o]
0.4 ? o & ° Filter ...
Jittering: ——————  10% © ° - -
g : (o] 1 diau f, spo- mid
Jitter numeric values 0.3 o
° 2 diau g, spo- mid
(i 02 3 heat 20, spo- mid
Color: function <] a diau f, spo- early
Shape:  (Same shape) | T o1 [} 5 diaug, spo &
ize: S i z o -
Size: (Same size) | T 2 o) 5 diau g, spo- early
B No label: ) :
Label (Nolabels) - g or o o 7 spo- mid, spo5 11
Symbol size:
¥ ° e 8 heat 10, spo- mid
Opacity: = -0.1
[5) oo o0 9 diau g, spo 2
Plot Properties (0] e 0 0 heat 10, spo- early
Show legend -0.2 ° o 0 (o]
Show gridlines o o° ° 7 heat 20, spo- early
Show all data on mouse hover ° o) diau g, spo 7
Show class density -0.3 (o] (o] B 3.5p
Show regression line @ 13 diaue, heat 20
Label only selected points
-0.4 14 Elu 120. diau a
Zoom/Select
Finished
M olall:: 05
\
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
Send Automatically diau f
€] = ! Points with missing 'diau ' or 'spo- mid' are not displayed

Scatter Plot and Ranking
We can connect the output of the Data Table widget to the Scat-
ter Plot widget to highlight the chosen data instances (rows) in the
scatter plot.

In this workflow, we have switched

Data R
D o8 on the option “Show channel names
o pate guose! R between widgets” in File/Preferences.
Q,, -~

) S d
Fil \eC\®

b s Scatter Plot

Data Table

How does Quasar distinguish between the primary data source
and the data selection? It uses the first connected signal as the
entire data set and the second one as its subset. To make changes
or to check what is happening under the hood, double click on the
line connecting the two widgets.
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@ 9 Edit Links

Data

Selected Data °®
Data Subset -

Data L
D Features
Data Table Scatter Plot
Clear All Cancel | OK )

The rows in the data set we are exploring in this lesson are gene
profiles. We could perhaps use widgets from the Bioinformatics
add-on to get more information on the genes we selected in any of
the Quasar widgets.

D) a5 A

File Scatter Plot Gene Name Matcher

Quasar comes with a basic set of
widgets for data input, preprocessing,
visualization and modeling. For
other tasks, like text mining, network
analysis, and bioinformatics, there
are add-ons. Check them out by
selecting Add-ons... from the Options
menu.



Basic data exploration

LET US CONSIDER ANOTHER PROBLEM Let us consider another
problem, this time from clinical medicine. We will dig for some-

thing interesting in the data and explore it a bit with visualization
widgets. You will get to know Quasar better, and also learn about

several interesting visualizations.

We will start with an empty canvas; to clean it from our previous

lesson, use either File/New or select all the widgets and remove
them (use the backspace/delete key, or Cmd-backspace if you are
on Mac).

Now again, add the File widget and open another documenta-
tion data set: heart_disease. How does the data look like?

D Data Info
0)
File m
Data Table
Let us check whether common visualizations tell us anything

interesting. (Hint: look for gender differences. These are always
interesting and occasionally even real.)

Data % -
% Box Plot
File ®
L
o <)
% ..o‘
Scatter Plot
1h.

Distributions

A simple workflow to inspect the
loaded dataset.

Quick check with common statistics
and other visualization widgets.
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The two Distributions widgets get
different data: the upper gets the se-

lected rows and the lower gets the rest.

Double-click the connection between
the widgets to access setup dialog, as
you've learned in the previous lesson.

Select Rows

Conditions

@ gender B B mae B

Remove All

B Add Al Variables

Data Purging

Data can also be split by the value of features—in this case—the

gender.

- Dav
ng Da\ IIII
watenV
Data
D E" Un'”a[ Distributions
N Cheg o
alg <
: Dafa
File Select Rows I
|8

Distributions (1)

In the Select Rows widget, we select the female patients. You can
also add other conditions. Selection of data instances provides a
powerful combination with visualization of data distribution. Try
having at least two widgets open at the same time and explore the

data.

In: ~303 rows, 14 variables
Out: ~206 rows, 13 variables

Remove unused features
Remove unused classes

Send automatically
=

Select Rows and Distributions widget

Variable

M age
chest pain

[ rest SBP

[ cholesterol

fasting blood sugar > 120
rest ECG

M max HR

exerc ind ang

[0 ST by exercise

slope peak exc ST

M mainr

accale ~nlarad

Precision

Smooth
Bin numeric variables

Group by

diameter narrowing

Distributions (1)

0.004 |
0.8

0.003 -
0.6

Density
Probability

0.002
0.4

Precise

0.001 | 0

a— 1o

Show relative frequencies 0 260 460 660

Show probabilities: 1

| T cholesterol

2l e =

There are two less known — but great — visualizations for ob-

serving interactions between features.

Mosaic display shows a rectangle split into columns with widths
reflecting the prevalence of different types of chest pain. Each col-
umn is then further split vertically according to gender distribu-
tions within the column. The resulting rectangles are split again
horizontally according to age group sizes. Within the resulting

bars, the red and blue areas represent the outcome distribution for
each group and the tiny strip to the left of each shows the overall

distribution.



What can you read from this diagram?

[ JOX ) ® Mosaic Display

[3) chest pain age
<475 475-555555-60.5 =60.5

[3) gender
HCET
(None)
Interior Coloring
Pearson residuals
(© Class distribution
Compare with total
male
x
g

N ‘I}I}I}l

asymptomatic atypical ang
chest pain

Save Image Report

Another visualization, Sieve diagram also splits a rectangle hor-
izontally and vertically, but with independent cuts, so the areas
correspond to the expected number of data instances if the ob-
served variables were independent. For instance, 1/4 of patients
are older than 60, and 1/3 of patients are female, so the area of
the bottom right rectangle is 1/12 of the total area. With roughly
300 patients, we would expect 1/12 x 300 = 25 older women in our
data. As a matter of fact, there are 34. Sieve diagram shows the dif-
ference between the expected and the observed frequencies by the

grid density and the color of the field.

diameter narrowing: ¥ 0

non-anginal

m1

typical ang

[ JOX ) M Sieve Diagram
male

o}
°
c
8
o

female
N =303 <475 47.5-55.5 55.5 - 60.5 =605
X?=6.28, p=0.099 age

Save Image

Report
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You can play with the widget by trying
different combinations of 1-4 features.

See the Score Combinations button?
Guess what it does? And how it scores
the combinations? (Hint: there are
some Greek letters at the bottom of the
widget.)



Saving your work

AT THE END OF A LESSON, your workflow may look like this:

A fairly complex workflow that you
would want to share or reuse at a later m:l

time. E

Data Table ooe
l...

Data Table (1)

Scatter Plot

3
o0

0

File g Scatter Plot (1)

+ 4+
3
é é Select Rows

Distributions

Box Plot

Distributions (1)

You can save this processing workflow, otherwise called "Schema"
using the File/Save menu and share it with your colleagues. Just
don’t forget to put the data files in the same directory as the file
with the workflow.

Widgets also have a Report button in their bottom status bar,
which you can use to keep a log of your analysis. When you find

Clicking on a section of the report something interesting, just click it and the graph will be added to
window allows you to add a comment. your log. You can also add reports from the widgets on the path to
0 o e e s R R AR : iis one, to make sure you don’t forget anything relevant.
L |
femde) | @@ @ Report
[ File - brown-selected Box Plot Wed Mar 21 18, 12:40:38
N =303 < B S_EIe‘_:t R?ws N Resp: -0.0397 = 0.0484
. Distributions - diau g |
¥?=6.28, p=0.099 B —
— | —
-0.0740 -0.0395 0.0060
Hey, it seems that wor
man... Proteas: '0v0|064 +0.0483
— | —
-0.0320 -0.0070 0.0140
Ribo: 00[077:0.0346
Click to enlarge or reduce thi\llel of the document.
The report wi 000 00085 00260
additional te>
Save Print 0.200 -0.100 0.000 0.100 0.20C

You can save the report as HTML or PDF, or a report file that
includes all workflow related report items that you can later open
in Orange. In this way, you and your colleagues can reproduce your
analysis results.



Loading data sets

THE DATA SETS WE HAVE WORKED WITH in the previous lesson
come with the Quasar installation. Quasar can read data from
many file formats which include tab and comma separated and
Excel files. To see how this works, let’s prepare a data set (with
school subjects and grades) in Excel and save it on a local disk.

° Da S - B grades-small A~ ©- Make a spreadsheet in Excel with
Home Insert Pagelayout Formulas Data Review View &+ Share v the numbers shown on the left. Of

E2 = fi 46 M course, you can use any other editor,
A B G D E F G but remember to save your file in the

1 |Student English History Algebra Physics PE comma separated values (*.csv) format.

2 |George 22 32 21 46_ 99

3 John 91 65 89 11 29

4 Thomas 51 21 100 100 27

5 James 9 18 61 90 8

6 John 93 39 12 17 63

7

8

qQ

4 > Sheet1 +

Ready HH | - » + 144%

In Quasar, we can use, for example, the File widget to load this

data set.
oK ) File The File widget allows you to select
a local file or even paste a URL to
Opile: | grades-smallxisx o = L Reload a Google Spreadsheet. In the Info
EE ) box, you will see a quick summary
Info about the data you loaded. By double
5 instance(s), 5 feature(s), 1 meta attribute(s) clicking the fields, you can also edit

Data has no target variable. . .
e the types of entries and their role, that

will be relevant for further processing.
Columns (Double click to edit)

Name Type Role Values

1 English M numeric feature

2 History O numeric feature

3 Algebra [ numeric feature

4 Physics [ numeric feature

5 PE ™ numeric feature

6 Student string meta

Browse documentation data sets Report Apply

Looks good! Quasar has correctly guessed that student names
are character strings and that this column in the data set is special,
meant to provide additional information and not to be used for any
kind of modeling (more about this in the upcoming lectures). All
other columns are numeric features.
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Make the simple workflow shown on
the right.

e0e@
Info
5 instances Student
6 features (no missing values) 1 George
No target variable. 2 John
1 meta attribute (no missing 3 Thomas
values) N
5 John

Variables

Show variable labels (if present)
Visualize continuous values
Color by instance classes

Selection

Select full rows

Restore Original Order

Report

Send Automatically

The Data Table widget shows the
loaded data set, you can select rows,
which will appear on the output of
the widget. It is also possible to do
simple data visualizations. Explore the
functionalities!

It is always good to check if all the data was read correctly. Now,
you can connect the File widget with the Data Table widget,

O —AE
File Data Table

and double click on the Data Table to see the data in a spreadsheet
format. Nice, everything is here.

™ Data Table
English History Algebra Physics Physical GPA
22.000 32.000 21.000 46.000 99.000 3.000
91.000 65.000 89.000 11.000 29.000 3.000
51.000 21.000 100.000 100.000 27.000 3.000
9.000 18.000 61.000 90.000 8.000 2.000
93.000 39.000 12.000 17.000 63.000 1.000

Instead of using Excel, we could also use Google Sheets, a free
on-line spreadsheet alternative. Then, instead of finding the file on
the local disk, we would enter its URL address to the File widget
URL entry box.

Quasar’s legacy native data format is a tab-delimited text file
with three header rows. The first row lists the attribute names, the
second row defines their type (continuous, discrete, time and string,
or abbreviated ¢, d, t, and s), and the third row an optional role
(class, meta, weight, or ignore).

There is more to input data formatting and loading. If you
would really like to dive in for more, check out the documentation
page on Loading your Data, or a video tutorial on this subject.


https://orange-visual-programming.readthedocs.io/loading-your-data/index.html
https://www.youtube.com/watch?v=MHcGdQeYCMg

Spectral data

LET’S MAKE THE SMALL WORKFLOW shown on the right and open

the “Liver spectroscopy” data set from Quasar’s Datasets widget. In

a Data Table, each row represents a spectrum. For the liver dataset,
all columns, except the class column, describe absorbance at a spe-
cific wavenumber. Their column names must be numbers, other-

wise Quasar’s spectral tools will just enumerate them, starting from

0.
ece Datasets
[search for data set ...
v Title Size Instances Variables Target Tags
®  Liver spectroscopy (Collagen) 994.8 KB 731 234 [9 categorical spectral
®  Adult 4.1 MB 32561 15 categorical economy
®  Heart Disease 23.5KB 303 14 [@ categorical biology, medicine
®  Liver cirrhosis - spectral image 3.4MB 1078 546 spectral, hyperspectral
Breast Cancer and Docetaxel Treatment 1.8 MB 24 9486 categorical biology
Smoking effect on B lymphocytes 1.8 MB 79 3000 [@ categorical genomics
Bone marrow mononuclear cells with AML 582.0 KB 96 1000 categorical genomics
HDI 65.1 KB 188 66 [ numeric economy, geo
Abalone 187.5 KB 4177 8 [ numeric  biology
Attrition - Predict 838 bytes 3 18 categorical economy, synthetic, educ...
Attrition - Train 182.2 KB 1470 18 categorical economy, synthetic
Auto MPG 17.3 KB 398 9 [ numeric
Description
Liver spectroscopy (Collagen) (2017)
Data on cells with Fourier infrared spt py (FTIR) and to the majority presence of a chemical compound

(collagen, glycogen, lipids, or DNA) in that part of the cell. Each row represents the data on specific cell, with components of the spectra given in

columns. The data was compiled by dr. Christophe Sandt.

See Also
Orange with Spectroscopy Add-on Workshop.

Connect the data to a Spectra widget from the Spectroscopy
toolbox. To see the graph below, choose the feature for coloring in

the top-left Menu (or click on the graph and press “c”).

ec e Spectra
| 1014.8 0.8019
Menu [
1 DNA
@ collagen
0.9 glycogen
lipids
08
07
06
05
04 \
|
B /\/‘ 7
02 \
A
N
01
7000 7100 7200 300 7400 7500 600 700 8

O

Data Table

Datasets

M

Spectra (1)

Your first spectroscopy workflow!

The Datasets widget provides data for
training and testing purposes. The
files are stored on a server and to use
it, you need a working internet con-
nection, but after you accessed them,

Resample curves R
Resampling reset #¥R
Zoom in Z
Zoom to fit <«
Rescale Y to fit D
V/ Show averages A
Show grid G
Invert X X
Select (line) S
Save graph #S
Define view range >

Color individual curves |
Color by type
Title: | \

X-axis: | ‘

Y-axis: | ‘

The Spectra widget and it’s options.
Try to use keyboard shortcuts on the
right for frequent actions.



PCA on spectral data

In this lesson we will explore the capabilities of

Data Quasar for principal component analysis (PCA) on
.' . .
@ Data o mi spectroscopy data. As usual, we will use the Liver
g Spectroscopy dataset. Connect Datasets to the PCA
Datasets PCA g g Scatter Plot widget, choose the first 5 principal components and
[}
) El then connect PCA’s default output, “Data”, into the
w
Y /\A Scatter Plot.
We see that the first two principal components
Soect separate majority compounds in that part of the
pectra .
tissue well.
o0 e PCA
Components Selection . cumulative| variance
Components: 5 z 0.973
Explained variance: 97% 2
0.8
Options [ ] [ ] Scatter Plot
Normalize variables S 06 )~ O
Show only first 20 : - o ~ O LD
1 - 0O Q
Q@’ () 2L © collagen
£ 4 9) . Q@
0.8 b @ glycogen
0.2 0.6 f‘/ O lipids
®) :
0.025 0.4 -
o~
] : LI o
Pri ’
2BB of
-0.2
-0.4

s
-1.4 -1.2 -1 -0.8 -06 -04 -02 O 02 04 06 08 1 1.2
PC1

280 |[Am B
We chose not to normalize variables in
pea Why? To see what different principal components
- : Specte e represent, connect PCA’s “Components” out-
v B I put (be careful, PCA has 4 outputs) into Spec-
/ tra. Wondering which principal component is
highlighted in the following screenshot? Wait
for the tooltip...

-0.3

1
1000 1200

i
1400 1600

28

The curve under the cursor is highlighted. A tooltip will appear
after some time. If clicked, the curve will be selected.
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Let’s extend our workflow. If we connect the PCA (“Transformed
Data” output) to Spectra, we can see each transformed spectrum on
a line plot. As we can see, some classes have outliers.

To find out more about a particular
outlier, we can select it in the Spectra Transformed Data
widget: move your mouse cursor to \
a curve—it will be highlighted—and -,
click it. The selected curve changes to a =
dotted line and is sent to the output.

Then, connect the Spectra widget
to the Scatter Plot and the Spectra (1) Datasets
widgets” “Data Subset” inputs; these
widgets will need two inputs to func-

bset inputs\

Scatter Plot

tion as shown, the subset coming from
the selection in Spectra and the whole
data set. Now we can see the selected Spectra (1)
outlier in the original space (Spectra

(1) widget) and in the space of principal components (Scatter Plot),

both in the context of all spectra from the data set.

[ JoN ) Spectra [ JoN ] Spectra (1)
L ' ! f ' 1748 §NA0520
Menu 3D16RA 186 Menu n A BNA q
K
\ 2 ® collagen | ® collagen
0.8
glycogen
0.6 lipids
0.4
-1 0.2,
0 1 2 3 ¢z 1000 1200 1400 1600 18
? 2
000 Scatter Plot
1t O é):o %O © DNA
0.8 % @ collagen
06 © glycogen
0.4 © lipids

PC2

PC1

2808 |Am B

The selected spectrum’s curve on the
left is drawn with a dashed line and
the corresponding original spectrum
is highlighted on the right. The Scatter
Plot shows the position of the selected
spectrum in the PCA space.



]

@ Data Table
Datasets :‘AA
HyperSpectra

The HyperSpectra widget has two main
parts, it can show image (top) and a
spectra (bottom). Explore the options
on both plots in their Menus and the
left panel, where you can change the
visualization parameters.

To view the plotted integrals, set the
spectra display to show individual
spectra and click a spectrum. Integrals
for the selected spectrum are shaded.

Working with hyperspectral data

We can also visualize hyperspectral data sets. In the Datasets wid-

get you will find “Liver cirrhosis” data. Connecting to a Data Table,

you will see that each spectrum contains information (in meta

variables) about image positions (map_x and map_y). Quasar can

recognize the image positioning features from the file automati-
cally. Otherwise, you could set them manually in the image Menu
under the Axis x and Axis y options.

eoce HyperSpectra
Image valves.

© From spectra
ntegralfrom 0 B

Use feature
0 map_x

000 1200 1400 1600 1800 2000 2200 2400 2600 2800  30(

By default, the image is the 2D representation of the whole in-
tegral of each spectrum. To change it, move the red lines on the
spectrum plot. With the dropdown menu on the left panel you can
select other representations.

eoce HyperSpectra
image values

© From spectra
Peak from 0 B

Use feature

1625.5 1.1903

7800 30¢

2?8




Preprocessing spectral data o P

Datasets Preprocess Spectra HyperSpectra

Preprocessing spectra is a very important step of data

analysis. Quasar has a widget, Preprocessing, dedicated to different
methods. The spectra from the “Liver cirrhosis” data set could use
some preprocessing. There is some scattering visible and perhaps
there are some artifacts due to sample thickness varying slightly.

ece Preprocess Spectra You can add preprocessing steps from
A preprocasser B . | o1700128 the top dropdown menu of the left
* |Cut (keep) > o & oy s p
1|z 5 panel. Then, it is possible to drag
Low limit 900 3 3 .
o = them up and down to change their
High limit 1707.8 08 .
order. Each preprocessor has its own
* [Peseine Gorrection 3 B parameters. In the example here we
Beselne Type | Fubbor band os show how the Baseline correction
Peak Direction = Positive i . .
i ~ oz is done: you can simply change the
Background Action | Subtract A r - (
‘ baseline points by dragging the red
* Normalize Spectra > 1000 2000 304 . .
b lines in the top spectrum panel. Each
© Vector Normalization Menu ' . . .
Area Normalization stage can be previewed by clicking the
Normalize to  Integral from 0 < 02k

small triangle.
Lower limit 902,54

Preview

Show spectra 10

Output

Commit

0 : N
000 7200 400 1600 78t

Let’s see the result of our preprocessing in a HyperSpectra widget.

ece HyperSpectra (1) The preprocessed data in HyperSpectra.
nage valies " Di in anything? To investi
e — ar\genu d we ga a. yt g: o invest gafe
Peak from 0 why the blue island disappeared, click
60 . . . .
DD on a pixel in it to see its spectrum.
09 map_x < 40

bl 1158.50.2324

28




Integrals and ratios

7\ T/ =
Datasets Integrate Spectra Edit Domain  Feature Constructor ~ Data Table Peak integration is an essential element of spec-
troscopy for measuring concentrations, spectral
contributions, etc.
To compute integrals, we use
the Integrate Spectra widget. Let’s

ot P —— ‘ werean|  cOmpute the ratios of two integrals

J“ng'l':‘m — — : to establish an internal standard
it 15783488 : it ‘ in our dataset. Add two integrals

[ rssationsassine O and then feed them into the Fea-
Lowtimt 29720535 . os

ture Constructor (Edit Domain is

High limit 28321822

optional—we use it to simplify

0.6

column names). In Feature Con-
04 structor, we can create new numeric

Preview

features with Python expressions.

Show spectra 3

o
o

To work with Feature Construc-

v

- N
Output as metas e

Commit -

tor more easily, uncheck “Output

1000 1200 1400 1600 1800 Zdﬁﬂ 2200 2400 2600 2800 30
? as metas”, which will replace the
original spectra with their integrals
To display a preview, select a spectrum and enable preview of individual inte- (and reduce the number of columns
grals with their play buttons. in your data). We can use Feature

Constructor whenever we would like
to create a new column from existing data.

We added a Numeric feature, the ratio YooK ) Feature Constructor
of I1 and I2 called R1. Variable Definitions
New g r 1/12
Remove Select Feature E Select Function E
M R1:=1/12
[ JOX J Data Table
map_x map_y il 12 R1
1 -211.302 -62.666 12.2113 8.80553 1.387
2 -203.302 -62.666 12.271 7.59829 1.615
3 -195.302 -62.666 11.6096 7.87214 1.475
4 -187.302 -62.666 10.9385 5.56565 1.965
5 -179.302 -62.666 11.5459 7.06217 1.635
6 -171.302 -62.666 12.5025 7.16631 1.745
| . |7 -163.302 -62.666 12.6683 4.11542 3.078
78 8 -155.302 -62.666 14.4907 4.07685 3.554
9 -147.302 -62.666 18.691 3.83772 4.870
2 B

The produced data can be inspected by connecting other widgets.



Classification

We have seen the iris data before. We wanted to predict varieties

based on measurements—but we actually did not make any predic-

tions. We observed some potentially interesting relations between

the features and the varieties, but have never constructed an actual

model.
Let us create one now.

0

File

e\e Q

The data is fed into
the Tree widget, which
infers a classification
model and gives it to the
Predictions widget. Note
that unlike in our past
workflows, in which the
communication between
widgets included only
the data, we here have
a channel that carries a
predictive model.

We call the variable we wish to predict
a target variable, or an outcome or, in
traditional machine learning termi-
nology, a class. Hence we talk about
classification, classifiers, classification
trees...

Data Something in this workflow is concep-
) tually wrong. Can you guess what?
E? ==
'b\
N -
Q Predictions
7
5
S
1
Tree
[ [ ] Predictions
Show probabibilities for Tree iris v | sepallength sepal width
i 47 1.00:0.00:0.00 - Iris-setosa | Iris-setosa 5.1 3.8
Iris-versicolor .
Iris-virginica 48 1.00:0.00:0.00 - Iris-setosa  Iris-setosa 4.6 3.2
49 1.00:0.00:0.00 - Iris-setosa lris-setosa 5.3 3.7
50  1.00:0.00:0.00 - Iris-setosa Iris-setosa 5.0 3.3
51  0.00:0.98:0.02 - Iris-versi... I icol 7.0 3.2
52 0.00:0.98:0.02 - Iris-versi... I 6.4 3.2
53  0.00:0.98:0.02 - Iris-versi... I 6.9 3.1
54  0.00:0.98:0.02 - Iris-versi... I 5.5 2.3
55 0.00:0.98:0.02 - Iris-versi... |/Iris=versicolor ' 6.5 2.8
Model AUC CA F1 Precision Recall
Restore Original Order Tree 0.993 0.980 0.980 0.980 0.980

?al-ﬂisoi

The Predictions widget also receives the data from the File wid-

get. The widget uses the model to make predictions about the data

and shows them in the table.
How correct are these predictions? Do we have a good model?

How can we tell?

But (and even before answering these very important questions),

what is a classification tree? And how does Orange create one? Is

this algorithm something we should really use?

So many questions to answer!



Classification trees were hugely pop-
ular in the early years of machine
learning, when they were first inde-
pendently proposed by the engineer
Ross Quinlan (C4.5) and a group of
statisticians (CART), including the

father of random forests Leo Brieman.

\ Data

Classification Trees

In the previous lesson, we used a classification tree, one of the

oldest, but still popular, machine learning methods. We like it since

the method is easy to explain and gives rise to random forests, one

of the most accurate machine learning techniques (more on this

later). So, what kind of model is a classification tree?

Let us load iris data set, build a tree (widget Tree) and visualize it

in a Tree Viewer.

/ i , \ Model - Tree / : “2

File Tree Tree Viewer
o0 e Data Table
Info
. L iris sepal length sepal width petal length petal width
150 instances (no missing values)
- Iris-setosa 5.1 3.5 1.4 0.2
4 features (no missing values)
Discrete class with 3 values (no _ 4.9 3.0 14 0.2
missing values) Iris-setosa a7 3.2 1.3 0.2
No meta attributes Iris-setosa 4.6 3.1 1.5 0.2
Iris-setosa 5.0 3.6 1.4 0.2
Variables Iris-setosa 5.4 3.9 1.7 0.4
Show variable labels (if present) _ 4.6 3.4 14 0.3
Visualize numeric values _ 5.0 3.4 1.5 0.2
Color by instance classes _ 4.4 29 1.4 0.2
. is-setosa 4.9 31 15 0.1
Salction Iris-setosa 5.4 3.7 15 0.2
Select full rows ris-setosa a8 34 16 0.2
is-setosa 4.8 3.0 14 0.1
is-setosa 43 20 11 01
Restore Original Order _ 5.8 4.0 12 0.2
ris-setosa 57 a4 15 0.4
lris-setosa 5.4 3.9 1.3 0.4
7B
[ XoX ] Tree Viewer

Tree

9 nodes, 5 leaves

Display

Zoom: =——
Width: =~
Depth: ~ Unlimited
Edge width: = Relative to parent

Target class:  None

Iris-setosa
33.3%, 50/15

petal length

petal width

Iris-versicolor
50.0%, 50/10

petal width

=15 /.\ >1.5

Iris-virginica
100%, 3/3

Iris-versicolor,
66.7%, 2/3

2B6

We read the tree from top to
bottom. Looks like the column
petal length best separates the iris
variety sefosa from the others,
and in the next step, petal width
then almost perfectly separates
the remaining two varieties.

Trees place the most useful
feature at the root. What would
be the most useful feature? The
feature that splits the data into
two purest possible subsets. It
then splits both subsets further,
again by their most useful fea-
tures, and keeps doing so until

it reaches subsets in which all data belongs to the same class (leaf

nodes in strong blue or red) or until it runs out of data instances to



split or out of useful features (the two leaf nodes in white).

We still have not been very explicit about what we mean by “the
most useful” feature. There are many ways to measure the quality
of features, based on how well they distinguish between classes.
We will illustrate the general idea with information gain. We can
compute this measure in Orange using the Rank widget , which
estimates the quality of data features and ranks them according to
how informative they are about the class. We can either estimate
the information gain from the whole data set, or compute it on data
corresponding to an internal node of the classification tree in the
Tree Viewer. In the following example we use the Sailing data set.

o

Data Table

h ‘o

Tree Tree Viewer h
Datasets h

Rank

Rank (1)

Besides the information gain, Rank displays several other mea-
sures (including Gain Ratio and Gini), which are often quite in
agreement and were invented to better handle discrete features
with many different values.

[ J [ J Rank

Scoring Methods # | Info.gain v Gain ratio Gini

Information Gain

@ Co..ny 3 0.221 0.141 0.141

Information Gain Ratio
O BT (8 Outlook 2 0.129 0.130 0.085
ANOVA Sailboat 2. 0005 0005 0003

N
ReliefF
FCBF

Select Attributes

None
All
Manual

© Best ranked: 5 3

?2 B
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The Rank widget can be used on

its own to show the best predicting
features. Say, to figure out which genes
are best predictors of the phenotype in
some gene expression data set.

The Datasets widget is set to load the
Sailing data set. To use the second
Rank, select a node in the Tree Viewer.

For the whole Sailing data set, Company
is the most class-informative feature
according to all measures shown.
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Here is an interesting combination of a Tree Viewer and a Scatter
Plot. This time, use the Iris data set. In the Scatter Plot, we first
find the best visualization of this data set, that is, the one that best
separates the instances from different classes. Then we connect the

Tree Viewer to the Scatter Plot. Data instances (particular irises) from

the selected node in the Tree Viewer are shown in the Scatter Plot.

Careful, the Data widget needs to be
connected to the Scatter Plot’s Data D
input, and Tree Viewer to the Scatter
Plot’s Data Subset input.
File

Tree

{2 Scatter Plot
Tree Viewer t

Distributions

O

Data Table

Just for fun, we have included a few other widgets in this work-

flow. In a way, a Tree Viewer behaves like Select Rows, except that
the rules used to filter the data are inferred from the data itself and
optimized to obtain purer data subsets.

[ XX ) Tree Viewer

Iris-setosa
33.3%, 50/15

petal length

=19 >1.9

Iris-setosa O Iris-versicolor
100%, 50/50 50.0%, 50/10
petal width

=4.9 >4.9

Iris-virginica
66.7%, 4/6

petal width

=15 >1.5

e )
100%, 3/3 66.7%, 2/3 ?

[ XX ) Scatter Plot

2.4

2.2

2k
1.8
o

1.6 o OOOO
5 14 o O(%)
z O
T 1.2 @)
2 ()

1 000 @
0.8
0.6 O © Iris-setosa
Q
0.4 OCQKIDO @ Iris-versicolor
02{odBO -
[OXO) ) ) Ir:s virginica |
1 2 a4 5 6 7
petal length

7288

In the Tree Viewer we selected the
rightmost node. All data instances
coming to the selected node are
highlighted in Scatter Plot.

2BB|Hs0 B

Wherever possible, visualizations in Orange are designed to
support selection and passing of the data that applies to it. Finding

interesting data subsets and analyzing their commonalities is a

central part of explorative data analysis, a data analysis approach

favored by the data visualization guru Edward Tufte.



Naive Bayes

Naive Bayes is also a classification method. To see how naive Bayes Naive Bayes assumes class-wise
independent features. For a data set

works, we will use a data set on passengers’ survival in the Titanic
where features would actually be

disaster of 1912. The Titanic data set describes 2201 passengers, independent, which rarely happens in
with their tickets (first, second, thirds class or crew), age and gen- practice, the naive Bayes would be the
der. ideal classifier.

) A B

File Naive Bayes Nomogram

We inspect naive Bayes models with the Nomogram widget.
There, we se a scale ‘Points” and scales for each feature. Below
we can see probabilities. Note the “Target class’ in upper left cor-
ner. If it is set to ‘yes’, the widget will show the probability that a
passenger survived.

The nomogram shows that gender was the most important fea-
ture for survival. If we move the blue dot to ‘female’, the survival
probability increases to 73%. Furthermore, if that woman also trav-
elled in the first class, she survived with probability of go%. The
bottom scales show the conversion from feature contributions to

probability.
0@ Nomogram According to the probability theory
Target class [ | individual contributions should be
ves B 10 -05 00 05 10 1.5 20 multiplied. Nomograms get around
Points L e e this by working in a log-space: a
Scale sum in the log-space is equivalent to
Paintiscale multiplication in the original space.
© Log odds ratios male female Therefore nomograms sum contribu-
sex ' 0 tions (in the log-space) of all feature
Dspiaviieatizy values and then convert them back to
All crf'w_ second first probability.
© Best ranked: 0 | status third -
Rank by: Absolute importance a adult child
age O—.
Numeric features: :
Total 2l 0 o;o 210
T T 1T 1 O=
Probabilities (%) 10 30 60 a0

?2BRR



accuracy =

#{all}

#{correct}

Classification Accuracy

Now that we know what classification trees are, the next question

is what is the quality of their predictions. For beginning, we need

to define what we mean by quality. In classification, the simplest

measure of quality is classification accuracy expressed as the pro-

portion of data instances for which the classifier correctly guessed

the value of the class. Let’s see if we can estimate, or at least get
a feeling for, classification accuracy with the widgets we already

know.

Let us try this schema with the iris

D data set. The Predictions widget outputs a

data table augmented with a column that

DataTable  jncludes predictions. In the Data Table wid-

get, we can sort the data by any of these

t two columns, and manually select data

Distributions

Confusion Matrix

instances where the values of these two
features are different (this would not work
vx on big data). Roughly, visually estimating
the accuracy of predictions is straightfor-
ward in the Distribution widget, if we set
the features in view appropriately.

For precise statistics of correctly and

incorrectly classified examples open the Confusion Matrix widget.

Distributions
50 Iris-setosa
@ ris-versicolor

Iris-virginica

Frequency

|

0 —

ris-setosa Tris-versicolor TAs-virginica

Tree

==
File Predictions
Tree
ece
Variable
© inis
@ Tree
@ Tree (Iris-setosa)
Tree (ris-versicolor)
Tree (ris-virginica)
sepal length
sepal width
 petal lengtn
@ petal width
[ JoK ) Predictions
Columns
Tree iris v S€ spiitby @ iris
. . is=-virai i iraini Stack columns
102 0.00:0.02 :0.98 - Iris-virgi... | Iris-virginica ~ 5.8 S;Mmbm.“ies. By
103 0.00:0.02 : 0.98 > Iris-virgi... | Iris-virginica 7.1  Showcumaive distibution
104 0.00:0.02:0.98 - Iris-virgi... | Iris-virginica ~ 6.3
105 0.00:0.02:0.98 - Iris-virgi... | Iris-virginica 6.5 2 & &
106 0.00:0.02:0.98 - Iris-virgi... | Iris-virginica ~ 7.6 il
107 0.00:0.98 : 0.02 - Iris-versi...  Iris=virginis 49 —
108 0.00:0.02:0.98 - Iris-virgi... | Iris-virginica = 7.3
Model AUC CA F1 Precision Recall
Tree 0.993 0.980 0.980 0.980 0.980
2B I 5] 150 ¢ Output
Predictions
2B

The Confusion Matrix shows

3 incorrectly classified exam-
ples, which makes the accuracy
(150 — 3) /150 = 98%.

Confusion Matrix

Show: _Number of instances [

Iris-setosa_Iris-versicolor Iris-virginica 3
Iris-setosa 50 [ o 50
§ Iris-versicolor o 49 1 50
< iris-virginica 0 2 48 50
I 50 51 49 150
Probabilities
Select Correct Select Misclassified Clear Selection




How to Cheat

At this stage, the classification tree looks

very good. There’s only one data point

where it makes a mistake. Can we mess D <7>-<—
up the data set so bad that the trees will

ultimately fail? Like, remove any existing File Randomize

correlation between features and the class?

We can! There’s the Randomize widget with class shuffling. Check
out the chaos it creates in the Scatter Plot visualization where there
were nice clusters before randomization!

This lesson has a strange title and

it is not obvious why it was chosen.
Maybe you, the reader, should tell us
what does this lesson have to do with
cheating.

D
e
oo

Scatter Plot

eo0e Scatter Plot [ XoX ) Scatter Plot
4.4
© O Iris-setosa : a4 © O Iris-setosa
a2 1) (] Randomize 4.2 o
at © o O Iris-versicolor e . at O Iris-versicolor
&) 28 O
Iris-virginica ! Iris-virginica
9 Classes Features Metas 36 b

= =

3 Shuffled g
B uffled rows B

Z 1D Z 32 08

g & s
@ None ———————— A" @

z.a

100% 2.6

2.4

Replicable shuffling 2.2

2t

7 5 3 7
sepal length sepal length
2888 B 2 B | 2150 [ 150 2BB|ds B

Fine. There can be no classifier that can model this mess, right?
Let’s make sure.

h X Y Ji

File Randomize Predictions Confusion Matrix
Tree Tree Viewer

And the result? Here is a screenshot of

the Confusion Matrix. ece Confusion Matrix

Most unusual. Despite shuffling all the

Show:

Left: scatter plot of the Iris data set
before randomization; right: scatter
plot after shuffling 100% of rows.

Number of instances E

classes, which destroyed any connection

Iris-setosa Iris-versicolor Iris-virginica 3
between features and the class variable, ris-setosa - . 7 so
about 80% of predictions were still correct. 5 iris-versicolor 10 38 2 s0

< Iris-virginica 2 8 40 50
I 54 51 45 150
Select Correct Select Misclassified Clear Selection

28
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Can we further improve accuracy on the shuffled data? Let us
try to change some properties of the induced trees: in the Tree wid-
get, disable all early stopping criteria.

After we disable 2—4 check box in 200 Jree
. s Name
the Tree widget, our classifier starts = e 00 Eeey
. e
behaving almost perfectly. : _
Parameters Show: | Number of instances [

Induce binary tree

Min. number of instances in leaves:

Iris-setosa lIris-versicolor Iris-virginica 3
Do not split subsets smaller than:
Iris-setosa 49 1 0 50
Limit the maximal tree depth to:
! g T Iris-versicolor 1 49 0 50
3]
Classification < Iris-virginica 0 0] 50 50
Stop when majority reaches [%]: 95 ° I 50 50 50 150
Select Correct Select Misclassified Clear Selection

28 28

Wow, almost no mistakes now. How is this possible? On a class-
randomized data set?
To find the answer to this riddle, open
eoce lsojarer : the Tree Viewer and check out the tree.

Tree

How many nodes does it have? Are there

149 nodes, 75 leaves

o many data instances in the leaf nodes?
Zoom: Looks like the tree just memorized
Width: y

Depth: | Uniimited every data instance from the data set. No

Edge width: = Relative to parent &

wonder the predictions were right. The

(ol ol

Target class:  None

tree makes no sense, and it is complex

because it simply remembered everything.
Ha, if this is so, if a classifier remem-
bers everything from a data set but with-

out discovering any general patterns, it

7288

In the build tree, there are 75 leaves. Remember, there are only
150 rows in the Iris data set.

should perform miserably on any new
data set. Let us check this out. We will
split our data set into two sets, training
and testing, train the classification tree on the training data set and
then estimate its accuracy on the test data set.

Connect the Data Sampler widget

carefully. The Data Sampler splits the D 4){- - ¢ E:
data to a sample and out-of-sample
(so called remaining data). The sample File Randomize Data Sampler, Predictions Confusion Matrix

was given to the Tree widget, while
the remaining data was handed to the
Predictions widget. Set the Data Sampler {ﬁ
so that the size of these two data sets is i
about equal.
Tree Tree Viewer

Let’s check how the Confusion Matrix looks after testing the clas-
sifier on the test data.

The first two classes are a complete fail. The predictions for
ribosomal genes are a bit better, but still with lots of mistakes. On
the class-randomized training data our classifier fails miserably.
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Finally, just as we would expect.

O @ Confusion Matrix Confusion matrix if we estimate

. — accuracy on a data set that was not
Show: = Number of instances H used in learning

Iris-setosa Iris-versicolor Iris-virginica 3
Iris-setosa 10 7 4 21
§ Iris-versicolor 10 6 9 25
2 Iris-virginica 14 7 8 29
)3 34 20 21 75

Select Correct Select Misclassified Clear Selection

?2 B

We have just learned that we need to train the classifiers on the
training set and then test it on a separate test set to really measure
performance of a classification technique. With this test, we can
distinguish between those classifiers that just memorize the training
data and those that actually learn a general model.

Learning is not only memorizing. Rather, it is discovering pat-
terns that govern the data and apply to new data as well. To esti-
mate the accuracy of a classifier, we therefore need a separate test
set. This estimate should not depend on just one division of the
input data set to training and test set (here’s a place for cheating
as well). Instead, we need to repeat the process of estimation sev-
eral times, each time on a different train/test set and report on the
average score.



Random Forests

L&

Random Forest

Rank

File

Pythagorean Forest

Random forests, a modeling technique

o

Tree Viewer

introduced in 2001, is still one of the best
performing classification and regression
techniques. Instead of building a tree

by always choosing the a feature that
seems to separate best at that time, it
builds many trees in slightly random
ways. Therefore the induced trees are
different. For the final prediction the trees

vote for the best class.

Pythagorean Forest

The Pythagorean Forest widget shows
us how random the trees are. If we
select a tree, we can observe it in a Tree
Viewer.

Feature importance according to

two univariate measures (gain ratio
and gini index) and random forests.
Random forests also consider combina-
tions of features when evaluating their
importance.

Forest

Trees: 10

Display

Depth
Target class None

Size Normal

Zoom

288

There are two sources of randomness: (1) training data is sam-

pled with replacement, and (2) the best feature for a split is chosen

among a subset of randomly chosen features.

Which features are the most important? The creators of random

forests also defined a procedure for computing feature importances

from random forests. In Orange, you can use it with the Rank wid-

get.

[ XX ) Rank
M # | Gai.tio v Gini Rand...rest
informtion Gain Ratio ] ? —— —
2 Gini Decrease @ exerc ind ang 2| e | cn— -
ANOVA chest pain a
)se"efp (0 major vessels colored
FCBF @ slope peak exc ST Al " R
. 00 ST by exercise 0074 ___0.095 ___0.094
None (@ gender 2 __ 0063 __ 0038 _ 0027
Al €0 max HR __ 0062 ___0081 ___0.075
Manual 0 age _ 0029 __ 0039 __ 0053
O Best ranked: |5 ?  @restece 3 _ 0022 _ 0016 0011
[ cholesterol 0.008 0.011 __ 0.049
) rest SBP 0.008 _ 0.010 __ 0.055

2B

! Missing values will be imputed as needed.



Cross-Validation

Estimating the accuracy may depend on a particular split

of the data set. To increase robustness, we can repeat the D
measurement several times, each time choosing a different
subset of the data for training. One such method is cross- File
validation. It is available in Orange through the Test and

Score widget.

Note that in each iteration, Test and Score will pick a part
of the data for training, learn the predictive model on this
data using some machine learning method, and then test
the accuracy of the resulting model on the remaining, test
data set. For this, the widget will need on its input a data
set from which it will sample the data for training and testing,
and a learning method which it will use on the training data set
to construct a predictive model. In Orange, the learning method is
simply called a learner. Hence, Test and Score needs a learner on its
input.

This is another way to use the Tree widget. In the workflows
from the previous lessons we have used another of its outputs,
called Model; its construction required data. This time, no data is
needed for Tree, because all that we need from it is a Learner.

[ J [ J Test and Score
Sampling Evaluation Results
© Cross validation

Number of folds: = 10

Model v AUC CA F1 Precision Recall
Tree 0.965 0.953 0.953 0.953 0.953
Random Forest  0.988 0.947 0.947 0.947 0.947

Stratified

Random sampling

o

Repeat train/test: 1

<o

(=3

Training set size: = 6!

Stratified
Leave one out
Test on train data
Test on test data

Target Class

(Average over classes) E

?2 B

In the Test and Score widget, the second column, CA, stands for
classification accuracy, and this is what we really care for for now.

ﬁ

Test and Score

Tree

Random Forest

For geeks: a learner is an object that,
given the data, outputs a classifier. Just
what Test and Score needs.

Cross validation splits the data sets
into, say, 10 different non-overlapping
subsets we call folds. In each iteration,
one fold will be used for testing, while
the data from all other folds will be
used for training. In this way, each
data instance will be used for testing
exactly once.



O

D Data Table

Scatter Plot

We will introduce clustering with
a simple data set on students and
their grades in English and Algebra.

Load the data set from http://file.

biolab.si/text/grades.tab.

Hierarchical Clustering

Say that we are interested in finding clusters in our data. That is,
we would like to identify groups of data instances that are close
together, similar to each other. Consider a simple, two-featured data
set (see the side note) and plot it in the Scatter Plot. How many
clusters do we have? What defines a cluster? Which data instances
should belong to the same cluster? How does the clustering algo-
rithm actually work?

First, we need to define what we mean by “similar”. We will
assume that all our data instances are described (profiled) with
continuous features. One simple measure of similarity is the Eu-
clidean distance. So, we would like to group data instances with
small Euclidean distances.

o0 e Scatter Plot
: -
Size: (Same size) E 1oor Jena OCynthia
Label: Student E
90 Fred [e)
Label only selection and subset Bill
Symbol size: 80 lan
[ ] [ ] Data Table Opacity:
Jittering 70 .
Student English Algebra £ Katherine
1 il 91.0 89.0 é’ 0o
2_ Cynthia 51.0 100.0 Show legend 60 [ “Demtiash
3 Demi 9.0 61.0 Show gridlines
4 Fred 49.0 92.0 Show all data on mouse hover 50
5 George 91.0 49.0 Show regression line ) corge
6 lan 91.0 82.0 Treat variables as independent KON 9
7 Jena 39.0 99.0 40
8 Katherine 20.0 71.0 Zoom/Select
9 Lea 90.0 45.0 S Qo o)
10 Maya 100.0 32.0 30 “Maya
11 Nash 14.0 61.0 10 20 30 40 50 60 70 80 90 100
12 Phill 85.0 45.0 English
2B 2BB|H12 B

There are different ways to measure
the similarity between clusters. The
estimate we have described is called
average linkage. We could also esti-
mate the distance through the two
closest points in each clusters (single
linkage), or through the two points
that are furthest away (complete
linkage).

Next, we need to define a clustering algorithm. Say that we start
with each data instance being its own cluster, and then, at each
step, we join the clusters that are closest together. We estimate
the distance between the clusters with, say, the average distance
between all their pairs of data points. This algorithm is called hier-
archical clustering.


http://file.biolab.si/text/grades.tab
http://file.biolab.si/text/grades.tab

One possible way to observe the results of clustering on our
small data set with grades is through the following workflow:

O

D Data Table
2 -
File ﬁ E ....:.
Distances Hierarchical Scatter Plot
Clustering

Couldn’t be simpler. Load the data, measure the distances, use

them in hierarchical clustering, and visualize the results in a scatter

plot. The Hierarchical Clustering widget allows us to cut the hier-
archy at a certain distance score and output the corresponding
clusters:

[ JoN ] Hierarchical Clustering
Linkage
Average
Annotations
@ Student 16 1.4 1.2 ’! 0.8 0.6 04 0.2 ?
Maya
0 c1
Pruning George
Lea
© None Phill
Max depth: 10 S c2 Katherine
I a Demi
Nash
c3 Bill
lan
Selection ca Jena
E Cynthia
Manual Fred
© Height ratio: 55,2% b R
Top N: 3 - 16 14 12 1 0©0 @
Size: (Same size) B
Zoom
Label: Student B
Label only selection and subset
?2BB
Symbol size:
Opacity:
Jittering

Show color regions

Show legend
Show gridlines

Show all data on mouse hover
Show regression line

Treat variables as independent

Zoom/Select

I (D[ Q|([C:

Algebra

100

80

70

60

50

40

30

HIERARCHICAL CLUSTERING 33

[ Distances

Distances between

° Rows

Columns

Distance Metric

Euclidean

Normalized

2B
Scatter Plot
r (0]
Jena  Cynthia
Fred
Bill
lan
Katherine
’ODgr)Nash
George
ot PhilLea
ocC2
& IMaya
20 40 60 80 100
English

2BB|H12 B



Animal Kingdom

Your lecturers spent a substantial part of their youth admiring a
particular Croatian chocolate called Animal Kingdom. Each choco-
late bar came with a card—a drawing of some (random) animal,
and the associated album made us eat a lot of chocolate.

Funny stuff was we never understood the order in which the
cards were laid out in the album. We later learned about taxonomy,
but being more inclined to engineering we never mastered learning
it in our biology classes. Luckily, there’s data mining and the idea
that taxonomy simply stems from measuring the distance between
species.

Here we use zoo data (from the documen-

- tation data sets) with attributes that report
D )—( A H E )—( ; on various features of animals (has hair, has

Hierarchical clustering works fast for smaller data sets. But for
bigger ones it fails. Simply, it cannot be used. Why?

Distances

Hierarchical Box Plot
Clustering

feathers, lays eggs). We measure the distance
and compute the clustering. Animals in this
data set are annotated with type (mammal,
insect, bird, and so on). It would be cool to
know if the clustering re-discovered these
groups of animals.

To split the data into clusters, let us manually set a threshold by
dragging the vertical line left or right in the visualization. Can you
say what is the appropriate number of groups?

[ XX ) Hierarchical Clustering
Linkage
2 1 0
Average B 1 L I
iy N
Annotations [——— Lonoise
€2 ‘sealion
name e
[ JoX Box Plot
Pruning c3 Variable
© None type
“IMax depth: 10 C Cluster c1 mE 2
hair mam...
feathers Cc2 Hm 4
eggs mammal
Selection @_milk C3 | mmmmm— 36
o Order by relevance to subgroups . amph... rep...
= 4
Height ratio: 48,9% z Subgroups fish
sl
°Top N: 9 v None cs5 14
type bird
Zoom Cluster Cé II— 20
T hair
2 1 feathers c7 1
= M eaos i
B X invertebrate
188 Order by relevance to variable c8
9 insect
Display co 10
| Stretch bars
Show box labels 0 5 10 15 20 25 30 35 40
| Sort by subgroup frequencies X?: 454.42 (p=0.000, dof=48)
72868

What is wrong with those mammals?
Why can’t they be in one single clus-
ter? Two reasons. First, they represent
40% of the data instances. Second, they
include some weirdos. Who are they?
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Classification of Spectra

Logistic Regression

A i
Let’s open the collagen data set again and Datasets Preprocess Spectra Test and Score  Confusion Matrix

see how well can logistic regression predict

its four classes. Straightforward, right? Con-

nect Datasets, Logistic Regression, Predictions,

Confusion Matrix and that’s it. We would also like to do some spec-
tral processing (we will only keep the columns for wavenumbers
between 1500 cm~!and 1800 cm™1).

The Spectra widget shows wrong
predictions for the DNA class.

Show: Number of instances o]
Predicted
DNA collagen glycogen lipids b3
DNA 68 22 15 5 110
collagen 0 194 1 n 105
= [ JOX ] Spectra
>
5 glycogen 1 2 . pe .
g 9gveod vens |2 Classification results
lipids 0 0 1.2 ' 1489.39 1.2825
7=\
f \
b3 69 218 A DNA
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Select Correct Select Miscla
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/[ lipid
? a ipids
)
<
8
=
(]
2
2
Q
<
1620 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780
Frequency / cm™
?

Let’s not forget that it is pointless to predict for the same data
as we used for learning. We could either use a Data Sampler and
connect its Sample output to Preprocess Spectra and Remaining
output to Predictions, or obtain predictions from the Test and Score
widget. Confusion Matrix now shows the mistakes of the model
(scored with cross-validation). We can select them and inspect them
further in a Spectra widget. Here we colored them by the predicted
class (see the Menu).

M

Spectra
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™

But how does the
model make its deci-
sions? We already in-

Data Table
spected a different model,
AN s @ m N classification tree, where
AN S 3
each node represents a
Datasets Preprocess Spectra  Logistic Regression Transpose Select Columns Spectra decision ona Value Of a
N column. Logistic regression
works differently. On the
Spectra (1) training data it computes
weights for all columns
(wavelengths), which are then used for prediction, where values
are multiplied with weights. To see the weights, connect Logistic
Regression to a Data Table.
We get a table that is hard to under-
[ ] [ ] Data Table . . . . .
stand. What if we visualize it? First,
name DNA collagen glycogen lipids
1 intercept -4.9939 -5.37055 10.0245 -1.24602 TT’aI’lSpOS(i‘ the data Then’ use SEZECt
2 1797.407 0.909034 -0.256598 0.892044 -0.799088 COlumnS tO make the Visualization
3 1793.55 0.936854 -0.263577 0.89339 -0.803748 . A . .
4 1789.693 0981421  -0.253348  0.875729  -0.816769 prettier: in the widget remove the in-
5 1785.836 1.01774 -0.253514 0.863583 -0.822628
6 1781.979 104412 -0.264936 0.880427  -0.833656 tercept.
7 1778121 1.07544 -0.284456 0.892706 -0.837927 L .
8 1774.264 1.09218 -0.319905 0.924638 -0.83379 NOW’ Open Longth RegreSSlon and
9 1770.407 11246 -0.366673  0.884566  -0.779361 try changing its parameters. Observe
10 1766.55 1.13451 -0.414948 0.764578 -0.662419 .
1 1762.693 104912 -0.563869  0.559767  -0.356334 the effect on the weights.
12 1758.836 0.808707 -0.880625 0.105853 0.333615
13 1754.979 0.455023 -1.35237 -0.562661 1.35231
2B
[ ] [ ] Spectra
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4 I\
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2
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Datasets k-Means HyperSpectra

Clustering Spectral Images

We have already seen hierarchical clustering. Another clustering
algorithm, k-Means, is much faster for data with lots of rows, like
images, which contain a row (a spectrum) for each pixel. Still, for
the liver-cirrhosis data, both approaches are fast. Here, we use k-
Means with k=3 clusters.

e e HyperSpectra
® I— image values o 2
From spectra e -r 18
Number of Clusters Ihesinero s 80 6
. ~ © Use feature 60 |' "
© Fixed: ‘ 32 Cluster 20 - 12
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-20
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Menu uster averages
P . ! ' §79.80.0087
Initialize with KMeans++ 12| eqr
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o 08
q Q oo 8 c3
Maximum iterations: 300 5 oo
5
2 04
Apply Automatically < 2 |
? E 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 300
o Frequency / cm™!
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The Spectra widget shows wrong
predictions for the DNA class.

We see no meaningful

clusters. Therefore, we R .
()8
ot
need to preprocess the @ A ohe :
data. If we do it well,

we see that a cluster Datasets Preprocess Spectra k-Means Select Rows HyperSpectra

corresponds to the back-
ground. We could remove it with the Select Rows widget.

ece
image values ,
= | From spectra
[ JOX Select Rows Integralfrom 0 ¢ 08
2t © Use feature
Conditions Cluster

[

Add Condition Add All Variables Remove All Men F Cluster averages

2
<
= 3
Remove unused features g
: 2
~ | Remove unused classes Send Automatically 3
<
? E _ﬂ 1078 B 1004 1000 1200 1400 1600 18

Frequency / cm™

The Spectra widget shows wrong
predictions for the DNA class.
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