Two operational facilities for protein crystallography at SOLEIL

	PROXIMA 1	PROXIMA 2A
Beam size (at the sample position)	40 x 20 µm²	Micro focused beam (10 x 5 µm²)
Total intensity, for the full tors beam	1.4 x 10 ¹² photons per second (@8 keV, in the full focal spot and 0.0002 eV bandwidth and 500 mA beam current)	3.5 x 10 ¹² photons per second (@ 8 keV, in the full focal spot and 0.0002 eV bandwidth and 500 mA beam current)
Energy	Between 5.8 and 15.5 keV	Between 6 and 18 keV
Anomalous phasing experiments	MAD/SAD	MAD/SAD
Goniometer	SmarGon goniometer from SmarAct	EMBL-MAATEL MD2 microdiffractometer equipped with Mini-Kappa
Detector	EIGER X 16M (Data collection frame rates of 100Hz)	EIGER X 9M (Data collection frame rates of 40Hz)
Maximum resolution attainable (though this depends on crystal quality and maximum unit cell dimension)	0.82 Å @ 15 keV	0.78 Å @ 18 keV (0.60 Å using asymetrically offset detector)
Signal to noise ratio	The EIGER X 9M-16M are photon counting detectors, hence there is no "noise", so the signal to noise ratio on the beamline depends mainly on the X-ray background from the beamline and the sample mount. A capillary / pinhole that allows reducing air diffusion and scattering, combined with a new backstop design, means that excellent I/sig I I can be attained in both low and high resolution shells at both beamlines.	
Data collection time for a typical data set.	For 3600 images (360°), 36s	2 s - 3 minutes (nominally 90 s)
Data collection protocol	Helicoidal scans, full implementation of kappa goniometry	Helicoidal scans, grid scans, mini kappa goniometry
Transfer robot	CATS - Uni-puck, holds 48 crystal samples on SPINE standard pins. Transfer from the CATS robot plus crystal centring and acquisition of test images takes approximately 3 minutes.	CATS - Uni-puck, holds 144 crystal samples on SPINE standard pins. Transfer from the CATS robot plus crystal centring and acquisition of test images takes approximately 3 minutes.
Remarks	Particularly well adapted to anomalous phasing experiments and data collection from crystals with large unit cell dimension (<i>e.g.</i> a 723 Å unit cell edged to 2.8 Å resolution was collected without any particular difficulty), and has had some significant success in S SAD phasing using a 3-circle Kappa geometry goniostat.	Particularly well adapted to collecting data from crystals smaller than 30 microns in maximum dimension, but still capable of resolving large unit cell dimension crystals (up to approximately 600 Å cell edge to 3.0 Å resolution). Users often test 3-4 zones per crystals.
Data collection	Around 1 Uni-puck can be tested/collected in 1 hours. Remote access data collection can be made available on both beamlines.	
Data processing	Both beamlines use <i>xdsme</i> , a series of scripts using mostly the program <i>XDS</i> , and allowing refining automatically parameters essential for obtaining optimized structure factors. An industrial license for <i>XDS</i> is available.	

Both CATS robot use uni-puck format and we have tools to transfer samples (from SPINE pucks or canes) to uni-puck. Requests can be made for either or both beamlines and the time may be divided between both beamlines in 1 hour blocks.

For more information:

- https://www.synchrotron-soleil.fr/en/beamlines/proxima-1
- https://www.synchrotron-soleil.fr/fr/lignes-de-lumiere/proxima-2a
- xdsme : github.com/legrandp/xdsme