a view from time-resolved X-ray diffraction

a view from time-resolved X-ray diffraction

I. Scientific motivations

II. Pump-probe diffraction

- Principle
- Time resolution & synchronization
- Short X-ray pulse sources
- Specific geometrical constraints

III. Example

- Photo-induced phase transition in K_{0.3}MoO₃

a view from time-resolved X-ray diffraction

I. Scientific motivations

- II. Pump-probe diffraction
 - Principle
 - Time resolution & synchronization
 - Short X-ray pulse sources
 - Specific geometrical constraints
- III. Example
 - Photo-induced phase transition in K_{0.3}MoO₃

Structural dynamics in physics

• Crystals at thermodynamic equilibrium

Atomic displacements : sum of normal modes $\overrightarrow{u_n}(\vec{r},t) = \sum_{\lambda, \|\vec{k}\|} u_n(\lambda, \vec{k}) \vec{e}_{\lambda, \vec{k}} e^{i[\omega(\lambda, \vec{k})t - \vec{k}.\vec{r}]}$

Transverse mode

→ Experiments in the <u>frequency domain</u>: inelastic neutron scattering, Raman scattering...

Photo-induced structural dynamics

→ Experiments in the time domain: time-resolved pump-probe diffraction

Structural dynamics in physics (1/2)

Exploration of the potential in photo-excited states

Novel states of matter Ultrafast control of the physical properties

Structural dynamics in physics (2/2)

Cooperative effects in molecular crystals Light control of ferroelectric and magnetic materials

a view from time-resolved X-ray diffraction

I. Scientific motivations

II. Pump-probe diffraction

- Principle
- Time resolution & synchronization
- Short X-ray pulse sources
- Specific geometrical constraints
- III. Example
 - Photo-induced phase transition in K_{0.3}MoO₃

Time-resolved pump-probe diffraction

Following photo-induced structural changes as a function of time

- One pump-probe cycle \leftrightarrow diffraction signal too low !
- $\rightarrow N$ pump-probe cycles needed for each Δt : study of reversible processes
- ightarrow Irreversible processes : liquid jets / serial crystallography at X-FELs

I. Schlichting, IUCrJ **2**, 246–255 (2015) V. Panneels *et al.*, Structural Dynamics **2**, 041718 (2015) T. R. M. Barends, Science **350**, 445 (2015)

Typical layout for pump-probe diffraction

•Commercially available Ti:Sa lasers (1990 \rightarrow): ~ 40 fs pulses @ 800 nm [1.55 eV]

X-ray pulse sources

• Few ps pulses from synchrotrons: low- α mode

Normal operation:

- Optics optimized for a low-emittance electron beam
- Dispersion of $E_{e^-} \Longrightarrow$ dispersion of e^- revolution period
- Elongated e⁻ bunches, longer X-ray pulses

 \rightarrow User operation at BESSY, SOLEIL, DIAMOND

X-ray pulse sources

• 100 fs X-ray pulses from synchrotrons: femto-slicing sources (1995 \rightarrow)

•
$$\vec{E} \cdot \vec{v} \neq 0$$

$\Lambda_w = \Lambda_L$

Co-propagation of an electron bunch and a laser pulse in a wiggler

 \rightarrow Modulation of electron energies in the overlap zone

A - 1 L.

→ BESSY (soft X-rays), ALS, SLS & SOLEIL (hard X-rays)

X-ray pulse sources

• 100 fs X-ray pulses: X-FELs (2009 \rightarrow)

- Short electron pulses produced by a laser-driven electron gun [N electrons]
- Propagation in long undulators (100 m) [M poles]
- Electron beam bunching
 → Coherent emission of all the electrons

$I \propto N^2 \times M^2$: very high flux 80 fs hard X-ray pulses

Time-resolved pump-probe diffraction: laser-based sources

• X-ray plasma sources (1994 \rightarrow)

- Laser pulse onto a copper target
- Indirect ionization of Cu atoms
- Emission of X-rays with $K_{\alpha}(Cu)$ wavelength [λ = 1.54 Å]

10³ ph./pulse @1kHz 100 fs duration

F. Zamponi, Appl. Phys. A 96, 51-58 (2009)
A. Rousse *et al.*, PRE 50, 2200 (1994)
A. Rousse *et al.*, Nature 410, 65 (2001)

• Ultrafast electron diffraction (2003 \rightarrow)

- Frequency-tripled Ti:Sa laser pulse ($\lambda = 266 \text{ nm}$)
- Pulse-driven photocathode \rightarrow photoemission
- Acceleration to \sim 60 keV [$\lambda \sim$ 0.05 Å]

10³ e⁻/pulse @1kHz 300 fs duration

W.-X. Liang *et al.*, Chinese Phys. Lett. **26**, 020701 (2009) R. Srinivasan *et al.*, Helvetica Chimica Acta **86**, 1761-1799 (2003)

Pump-probe diffraction : typical photon or electron fluxes

Synchrotrons [repetition rate 1 kHz]			
• 80 ps X-ray pulses	$\bigcirc\bigcirc\bigcirc\bigcirc$	10⁶ photons/pulse $\Delta E/E \sim 10^{-4}$	10 ⁹ ph/s
• Few ps X-ray pulses (low- α)		10⁴ photons/pulse $\Delta E/E \sim 10^{-3}$	10 ⁷ ph/s
• 100 fs X-ray pulses (femto-slicing)	No. of the second secon	10³ photons/pulse $\Delta E/E \sim 8.10^{-3}$	10 ⁶ ph/s
Laser-based sources [repetition rate 1 kHz]			
• 100 fs X-ray pulses (plasma source)		10 ³ photons/pulse $\Delta E/E \sim 10^{-4}$	10 ⁶ ph/s
• 300 fs electron pulses		10 ³ electrons/pulse	10 ⁶ e ⁻ /s
X-ray free ele	ctron lasers [repe	tition rate 100 Hz]	
• 80 fs X-ray pulses		10¹¹ photons/pulse $\Delta E/E \sim 10^{-3}$	10 ¹³ ph/s
		ATA A	

Time resolved X-ray diffraction: experimental facts

• X-rays and IR photons: differing penetration depths !

[Typical values for hard condensed matter, 7 keV X-ray photons]

• Grazing incidence geometry, pump & probe beams collinear

a view from time-resolved X-ray diffraction

- I. Scientific motivations
- II. Pump-probe diffraction
 - Principle
 - Time resolution & synchronization
 - Short X-ray pulse sources
 - Specific geometrical constraints

III. Example

- Photo-induced phase transition in K_{0.3}MoO₃

Atomic structure of blue bronze $(K_{0.3}MoO_3)$

• A quasi-one-dimensional conductor...

 $\sigma_b
 = 3 \ 10^2 \ [\Omega.cm]^{-1}$

...which undergoes a transition to a charge density wave phase at 183 K

J. Graham and A.D. Wadsley, Acta Cryst. **20**, 93 (1966) G. Grüner, "Density waves in solids"

Formation of a charge density wave - Peierls model

• A metal-insulator transition driven by a periodic lattice distortion

Appearance of a charge density wave in blue bronze $(K_{0.3}MoO_3)$

• K_{0.3}MoO₃: satellite peaks @ $(h k l) + (1 q_b \frac{1}{2})$

Ultrafast light control of the physical properties of CDW compounds ?

• Femto-slicing source @ SLS:

• Time-dependence of the satellite $\left(1 \left[4-q_b\right] \frac{1}{2}\right)$ - Low fluence

• Time-dependence of the satellite $\left(1 \left[4-q_b\right] \frac{\overline{1}}{2}\right)$ - Higher fluences

• $F = 1 \text{mJ/cm}^2$

- \rightarrow The recovery time of satellite peak intensity increases
- \rightarrow Coherent oscillations: hardly observable

• $F > 1 \text{mJ/cm}^2$

- \rightarrow No recovery of satellite peak intensity within 10 ps
- \rightarrow Oscillation frequency doubled w/r to the low fluence case

Significant changes of the atomic potential surface

T. Huber et al., PRL 113, 026401 (2014)

• Time-dependence of the satellite $\left(1 \left[4-q_b\right] \frac{\overline{1}}{2}\right)$ - Higher fluences

• Free energy vs laser excitation $[\eta \propto \text{laser fluence}]$

$$F = F_0 + \frac{1}{2} \left[\eta e^{-\frac{t}{\tau}} - 1 \right] \, u_0^2 + \frac{1}{4} {u_0}^4$$

Equation of motion to be solved:

$$C_1 \frac{\partial^2 u_0(t)}{\partial t^2} = -\frac{dF}{du_0} - C_2 \gamma(t) \frac{\partial u_0(t)}{\partial t}$$

Non-harmonic motions of atoms

T. Huber et al., PRL 113, 026401 (2014)

• Time-dependence of the satellite $\left(1 \left[4-q_b\right] \frac{\overline{1}}{2}\right)$ - Higher fluences

Ultrafast change of atomic potential symmetry

Thank you !

