

CGE 2020 - Cristallographie et Grands Equipements

12-16 Octobre 2020

Synchrotron SOLEIL, Saint-Aubin, France

Sommaire

- Programme
- Liste des cours, travaux pratiques et travaux dirigés
- Abstracts des participants
- Liste des intervenants
- Liste des participants

Comité d'organisation :

Frédéric DATCHI : Institut de Minéralogie de Physique des Matériaux et Cosmochimie, Sorbonne Université, Paris

Pierre FERTEY : Synchrotron SOLEIL, Gif-sur-Yvette

David LEBOLLOC'H : Laboratoire de Physique des Solides, Orsay

Sylvie BONNARDEL : Synchrotron SOLEIL, Gif-sur-Yvette

Camille ENJOMMET : Synchrotron SOLEIL, Gif-sur-Yvette

Frédérique FRAISSARD : Synchrotron SOLEIL, Gif-sur-Yvette

Jean-Marc LUCACCHIONI : Synchrotron SOLEIL, Gif-sur-Yvette

Sylvie PAVAN : Synchrotron SOLEIL, Gif-sur-Yvette

Programme

Lundi, 12 octobre

- 10:00 11:00 ACCUEIL
- 11:00 11:15 Bienvenue et Introduction de Jean Daillant, Directeur de SOLEIL

Amphithéâtre SOLEIL

Cours :

- 11:15 12:45 Cristallographie géométrique, symétries l Delphine Cabaret
- 12:45 13:45 Déjeuner
- Amphithéâtre SOLEIL **Cours :** 13:45 - 15:45 Cristallographie géométrique, symétries II *Delphine Cabaret*
- 15:45 16:15 Pause-café

Amphithéâtre SOLEIL Atelier : 16:15 - 17:45 Cristal, réseau direct Massimiliano Marangolo

- 18:15 19:15 Session poster I
- 19:15 20:15 Diner
- 20:15 21:15 Session poster II

Mardi, 13 octobre

	Amphithéâtre SOLEIL
9:15 - 10:45	Cours : Diffusion Thomson, théorie cinématique I <i>Sylvain Ravy</i>
10:45 - 11:15	Pause-café
11:15 - 12:45	Amphithéâtre SOLEIL Cours : Diffusion Thomson, théorie cinématique II <i>Sylvain Ravy</i>
12:45 - 13:45	Déjeuner
13:45 - 14:45	Amphithéâtre SOLEIL Cours : SR, instrumentation <i>Jean-Paul Itié</i>
	Travaux dirigés :
14:45 - 16:15	Salle Phenix Groupe A: Groupes Sébastien Pillet
	Salle de formation T.5.1.55. Groupe B: Facteurs de structure <i>El Eulmi Bendeif</i>
16:15 - 16:45	Pause-café
	Travaux dirigés :
16:45 - 18:15	Salle de formation T.5.1.55. Groupe A: Facteurs de structure <i>El Eulmi Bendeif</i>
	Salle Phenix Groupe B: Groupes <i>Sébastien Pillet</i>
18:30 - 19:30	Amphithéâtre SOLEIL - Conférence grand public Jean-Louis Hodeau
19:45	Diner

Mercredi 14 octobre

9:15 - 10:45	Amphithéâtre SOLEIL Cours : Analyse de données monocristaux Sébastien Pillet
10:45 - 11:15	Pause-café
11:15 - 12:45	Amphithéâtre SOLEIL Cours : Analyse données poudres <i>Erik Elkaïm</i>
12:45 - 13:45	Déjeuner
	Travaux pratiques :
13:45 - 18:15	Salle Phenix Groupe A: Monocristaux Pierre Fertey et El Eulmi Bendeif
	Salle de formation T.5.1.55. Groupe B: Poudres <i>Erik Elkaïm et Hubert Chevreau</i>
18:30 - 20:30	Visite de SOLEIL
20:30	Diner

jeudi 15 octobre

9:15 - 10:45	Amphithéâtre SOLEIL Cours : Neutrons et diffraction magnétique <i>Françoise Damay et Grégory Chaboussant</i>
10:45 - 11:15	Pause-café
11:15 - 12:45	Amphithéâtre SOLEIL Cours : Pdf, neutrons et rayonnement X <i>Pierre Bordet</i>
12:45 - 13:45	Déjeuner
13:45 - 18:15	Travaux pratiques : Salle Phenix Groupe A: Poudres <i>Erik Elkaim et Hubert Chevreau</i> Salle de formation T.5.1.55. Groupe B: Monocristaux <i>Pierre Fertey et El Eulmi Bendeif</i>
19:15	Diner

vendredi 16 octobre

9:15 - 10:15	Amphithéâtre SOLEIL Cours : Temps résolu <i>Claire Laulhé</i>
10:15 - 11:15	Amphithéâtre SOLEIL Cours : Désordre <i>Pascale Launois</i>
1115 - 11:45	Pause-café
11:45 - 12:45	Amphithéâtre SOLEIL Cours : Surfaces, interfaces <i>Alessandro Coati</i>
12:45 - 13:45	Déjeuner
13:45 - 15:15	Amphithéâtre SOLEIL Cours : Cohérence <i>Vincent Jacques</i>
15:15 - 16:15	Bilan de l'école

Liste des cours, travaux pratiques et travaux dirigés

Cours	Intervenant	N° Fichier
Cristallographie géométrique, symétries	D. Cabaret	
Diffusion Thomson, théorie cinématique	S. Ravy	03(03_Diffusion- Diffraction_Ravy)
SR, instrumentation	J.P. Itié	04 (04-Instrum-RS- JP_Itie)
Analyse de données monocristaux	S. Pillet	07 (07_Analyse- donnees- monocristaux_Pillet.pdf)
Analyse données poudres	E. Elkaïm	08 (08_Analyse- donnees- poudres_Elkaim.pdf)
Pdf, neutrons et rayonnement X	P. Bordet	10 (10_pdf_Bordet.pdf)
Surfaces, interfaces	A. Coati	13 (13_Surfaces_Interfaces _Coati.pdf)
Temps résolu	C. Laulhé	11 (11_TimeResolvedDiffrac tion_ClaireLaulhé.pdf)
Désordre	P. Launois	12 (12_DESORDRE_Launoi s.pdf)
Cohérence	V. Jacques	14 (14_Coherence_lebolloch _oct2016.pdf)
Travaux pratiques	Intervenant	Dossier
Monocristaux	E. Bendeif et P. Fertey	TP-01
Poudres	E. Elkaïm et H. Chevreau	TP-02
Travaux dirigés	Intervenant	Dossier
Atelier: cristal, réseau direct	M. Marangolo	TD-01 (02_TD_EcoleCristallo_M arangolo2020.pdf)
facteurs de structure	S. Pillet	TD-02a
Groupes/symmétrie	E. Bendeif	TD02b (TD symetrie_groupe_Bendeif _1_SC.pdf)

Abstracts des participants

Abstact-01	Unconventional synthesis processes to mimic the harsh hydrothermal environment for Samsonite phase Adam Bertrand - CRISMAT, Caen, France		
Abstact-02	Matériaux thermoélectriques : Des antimoniures aux chalcogénures <i>Hugo Bouteiller</i> - CRISMAT, Caen, France		
Abstact-03	Étude des propriétés électro-mécaniques de couches minces d'ITO sur substrat flexible. <i>Thibault Chommaux - Institut Prime, Chasseneuil-du-Poitou, France</i>		
Abstact-04	Cationic ordering in SrREGa ₃ O ₇ (RE =Dy, Ho, Er, Tm, Yb, Lu) melilites: Structure, Stability <i>Haytem Bazzaoui</i> – <i>CEMHTI, Orléans, France</i>		
Abstact-05	Investigation of magnetoelectric properties in the Ni _{4-x} Co _x Nb ₂ O ₉ system <i>Jacqueline Nadine Jiongo Dongmo</i> - CRISMAT, Caen, France		
Abstact-06	Etudes des distributions de compositions de la solution solide U _{1-x} Zr _x O _{2+y} (Corium) lors de différents processus de refroidissements / solidifications <i>Mohamed Jizzini</i> - <i>CEA</i> , <i>Bagnols sur Cèze</i> , <i>France</i>		
Abstact-07	Long-term evolution of uranium speciation and mobility in lacustrine sediments <i>Pierre Lefebvre – IMPMC, Paris, France</i>		

Unconventional synthesis processes to mimic the harsh hydrothermal environment for Samsonite phase

Adam Bertrand^{1*}, Tristan Barbier¹, Franck Gascoin¹

¹⁾ CRISMAT, UMR6508 CNRS ENSICAEN, 6 bd Maréchal Juin, 14050 CAEN cedex 4, France

ABSTRACT

Samsonite (Ag₄MnSb₂S₆) is a mineral that can be naturally found in hydrothermal veins. Its complex crystal structure – it crystallizes in the monoclinic crystal system (space group: P2₁/n with a = 10.3861 A, b = 8.1108 A, c = 6.6637 A, and β = 92.639°) - together with the electron lone pair of Sb³⁺ atoms and the lack of research about it (never synthesized so far through lab conditions), make this phase highly promising for thermoelectric applications.1 Indeed, authors have shown through the tetrahedrite phase, that the electron lone pair of Sb³⁺ may explain the ultralow thermal conductivity of Cu₁₂Sb₄S₁₃.²

The objective is to synthesize $Ag_4MnSb_2S_6$ through unconventional synthesis ways (hydro/solvo-thermal synthesis and high energy ball-milling process) to mimic the high pressure and temperature found in natural conditions. Then, thermoelectric properties would be assessed (thermal dependence of the electrical conductivity, Seebeck coefficient and thermal conductivity).

As such, this poster will focus on these synthesis methods, their efficiency and exploring the possibility of replacing manganese with other elements such as copper or zinc. With copper (II) seemingly having a tendency to turn into copper (I) during the process, while zinc has shown signs of producing compounds that could resemble to Samsonite.

REFERENCES

^[1] L. Bindi, M. Evain, Gram-Charlier development of the atomic displacement factors into mineral structures, The case of samsonite, Ag4MnSb2S6. American Mineralogist, 92 (5-6), 2007, 886–891.

^[2] T. Barbier, S. Rollin-Martinet, P. Lemoine, F. Gascoin, A. Kaltzoglou, P. Vaqueiro, A.V. Powell and E. Guilmeau, Thermoelectric Materials: A New Rapid Synthesis Process for Nontoxic and High-Performance Tetrahedrite Compounds. J. Am. Ceram. Soc., 99, 2016, 51-56

Matériaux thermoélectriques : Des antimoniures aux chalcogénures

Hugo Bouteiller¹, David Berthebaud², Franck Gascoin¹

 Laboratoire CRISMAT UMR 6508, CNRS ENSICAEN, 6 boulevard du Maréchal Juin, 14050 Caen Cedex 04, France
CNRS-Saint Gobain-NIMS, UMI 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, Tsukuba, 305-0044, Japan

ABSTRACT

Les matériaux thermoélectriques sont des matériaux permettant d'une part la conversion de la chaleur en électricité par effet Seebeck et d'autre part la réfrigération (ou le chauffage) à partir d'énergie électrique par effet Peltier. La performance de ces matériaux se caractérise par leur figure de mérite ZT dépendante de la température, un bon thermoélectrique ayant généralement un ZT au-dessus de 1. L'optimisation des propriétés de transport telles que la conductivité thermique, la conductivité électrique ou le coefficient Seebeck est nécessaire afin d'obtenir un bon ZT et ainsi un matériau performant.[1]

Pour ce faire, le matériau doit posséder une structure cristallographique suffisamment complexe afin de diminuer le libre parcours moyen des phonons au sein de la structure et d'ainsi diminuer la conductivité thermique de réseau. De plus, il faut optimiser les propriétés de transport électroniques du matériau en contrôlant la concentration en porteurs de charge. On s'intéresse dans cette étude à deux systèmes chimiques distincts :

(i) des antimoniures de type Yb_4Sb_3 cristallisant dans le type structural anti-Th₃P₄[2] et synthétisés dans des tubes de niobium. La substitution de l'ytterbium de valence mixte (Yb^{2+}/Yb^{3+}) par du lanthane a été envisagée pour améliorer les propriétés de transport.

(ii) des pseudo-hollandites de type $Ba_{0.5}Cr_5Se_8$ avec une structure présentant un arrangement tridimensionnel d'octaèdres formant des canaux dans lequel se loge le baryum[3].

REFERENCES

G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials," *Nat. Mater.*, vol. 7, no. 2, pp. 105–114, **2008**.
A. Chamoire, R. Viennois, J. C. Tedenac, M. M. Koza, and F. Gascoin, "Antimony-based compounds with the anti-Th3P4 structure as potential high-temperature thermoelectric materials," in *Journal of Electronic Materials*, vol. 40, no. 5, pp. 1171–1175, **2011**.
R. Lefèvre, D. Berthebaud, O. Perez, D. Pelloquin, S. Hébert, and F. Gascoin, "Polar Transition-Metal Chalcogenide: Structure and Properties of the New Pseudo-Hollandite Ba0.5Cr5Se8," *Chem. Mater.*, vol. 27, no. 20, pp. 7110–7118, **2015**.

Étude des propriétés électro-mécaniques de couches minces d'ITO sur substrat flexible

Thibault Chommaux

Institut Prime, Chasseneuil-du-Poitou, France

ABSTRACT

Les oxydes transparents conducteurs (TCO) allient deux comportements souvent incompatibles ; la transparence optique et la résistivité électrique. Dans cette famille de matériaux, l'ITO (oxyde d'indium dopé étain) possède aujourd'hui l'un des meilleurs compromis entre ces deux propriétés physiques.Dans ce contexte, ce matériau déposé sous forme de couches minces sur substrat flexible offre de nombreuses applications dans la microélectronique étirable, à condition de maîtriser les propriétés optiques et électriques sous contrainte mécanique.

Cette étude repose sur l'analyse par diffraction de rayons X et mesure de résistivité Van der Pauw de couches minces d'ITO déposées sur substrat polyimide lorsqu'ils sont soumis à un essai de traction biaxial (ligne DiffAbs – Synchrotron Soleil). La mise en place des différentes techniques in-situ ont permis un suivi précis du comportement mécanique et électrique sous contrainte des couches minces étudiées.

Cationic ordering in SrREGa₃O₇ (RE =Dy, Ho, Er, Tm, Yb, Lu) melilites: Structure, Stability

Haytem Bazzaoui^a, Cécile Genevois^a, Marina Boyer^a, Yannick Ledemi^b, Michael Pitcher^a, and Mathieu Allix^a

^a CNRS, CEMHTI UPR 3079, Univ. Orléans, F-45071 Orléans, France. E-mail : mathieu.allix@cnrsorleans.fr

^b Univ Laval, Dept Phys Engn Phys & Opt, Ctr Opt Photon & Lasers, Pav Opt Photon, 2375 Rue Terrasse, Quebec City, PQ G1V 0A6, Canada.

Figure 1. Differential Scanning Calorimetry (DSC) measurements of SrErGa₃O₇ glass composition, where T_g , T_c and T_o are glass transition, crystallization and ordering temperatures respectively. The glass sample was heated from room temperature to 925°C, by 10°C/min, and cooled to room temperature using also a 10°C/min rate. The insert shows a close-up look to the Exothermal peak on cooling, and the allotropic phenomenon related to it.

The ABC₃O₇ structure type also called melilite structure type is a well-known host matrix for luminescent materials ^[1-2]. It crystallizes in a tetragonal system within a P-42₁m space group and cell parameters a≈7.93 Å, c≈5.22 Å, according to a of layered structure along the z axis formed bv corner-sharing MO_4 tetrahedra. between which alkaline earth and/or rare earths cations are located ^[3]. This structure type allows certain flexibility on the cations size that can be inserted between the sheets. Using an alternative synthesis process "full and congruent crystallization from glass", by a unique approach (Aerodynamic Levitation coupled to a

 CO_2 laser), a new SrREGa₃O₇ melilite superstructure, which is a 3-fold superstructure of the melilite sub-cell, crystallizes for small rare earths (RE = Dy - Lu). This new superstructure

crystallizes in an orthorhombic system within a P2₁2₁2 space group and cell parameters of $a\approx 23.79$ Å, $b\approx 7.93$ Å and $c\approx 5.22$ Å, with the same layered structure. This superstructure is due to an ordering of the A site cations among the x axis which results in a 3-times extension of the *a* parameter. For some rare earths both polymorphs can be crystallized depending on the annealing process undergone by the glass. The aim of this work is to determine which small rare earths favor the formation of this new superstructure, the fine structure for each rare earth, and to determine the stability of both polymorphs.

[1] A. A. Kaminskii, H. H. Yu, J. Y. Wang, Y. Y. Zhang, H. J. Zhang, O. Lux, H. Rhee, H. J. Eichler, J. Hanuza, H. Yoneda and A. Shirakawa, *Laser Phys.*, 2014, **24**, 085803.

[2] M. Karbowiak, P. Gnutek, C. Rudowicz and W. Ryba-Romanowski, Chem. Phys., 2011, 387, 69–78.

[3]M. Boyer, A. J.F. Carrion, S. Ory, A. I. Becerro, S. Villette, S. V. Eliseeva, S. Petoud, P. Aballea, G. Matzen, M. Allix, *J. Mater. Chem. C*, 2016, **4**, 3238–3247.

Investigation of magnetoelectric properties in the

Ni_{4-x}Co_xNb₂O₉ system

Jacqueline Nadine Jiongo Dongmo¹, Claire V. Colin², Antoine Maignan¹, Juan-Pablo Bolletta¹, Christine Martin¹ and Françoise Damay³

¹Laboratoire CRISMAT, Normandie Univ, ENSICAEN, UNICAEN, CNRS, 14050 Caen, France

²Institut Néel - CNRS, 25 avenue des Martyrs - BP 166, 38042 Grenoble cedex 9, France

³Laboratoire Léon Brillouin, Université Paris-Saclay, CEA Saclay, 91191 GIF-SUR-YVETTE Cedex, France

ABSTRACT

The 429 family (formula $M_4A_2O_9$, where M=Co, Mn, Fe, Mg and A=Nb or Ta) has a crystal structure derived from corundum [1], and represents an interesting class of materials because of its potential magnetoelectric (ME) properties [2-4]. While most compounds exhibit indeed a substantial magnetoelectric effect, such as $Co_4Nb_2O_9$ (electric polarization of 120 μ C/m² in 7 T) [5], Ni₄Nb₂O₉ is characterized in contrast by a lack of magnetoelectricity [6]. Interestingly, $Co_4Nb_2O_9$ crystallizes in the trigonal P-3c1 space group with an antiferromagnetic transition at $T_N=27K$ [7], when Ni₄Nb₂O₉ has an orthorhombic Pbcn crystal structure and exhibits a ferrimagnetic transition at T_N=76K [8]. The magnetic point group m'm'm associated with the Pb'cn' ferrimagnetic structure of Ni₄Nb₂O₉ does not allow magnetoelectric properties. We have initiated a study of the Ni_{4-x}Co_xNb₂O₉ system, to follow the structural and magnetic changes going from $Ni_4Nb_2O_9$ to $Co_4Nb_2O_9$, and to check if it will be possible to generate magnetoelectric properties in an orthorhombic crystal structure. This work relies on laboratory X-ray and neutron diffraction experiments, combined with magnetization, dielectric and polarization measurements. Our first results show that for x \leq 2.3, compounds exhibit a Ni₄Nb₂O₉-like behavior with ferrimagnetic transition temperatures varying from 76K to 49K, and a Co₄Nb₂O₉-like behavior for x \geq 2.5, with antiferromagnetic transitions varying from 36K to 27K. For x=1 and 2, $\epsilon'(T)$ curves are not affected by a magnetic field up to 9T, denoting the absence of magnetodielectric coupling. In contrast, for x=2.5 and 3, there is a peak on the ε '(T) curve at the magnetic transition temperature (36K and 33K, respectively), whose intensity tends to increase with increasing magnetic field, denoting a magnetodielectric coupling and suggesting a magnetoelectric effect as in Co₄Nb₂O₉ [5]. Further dielectric and polarization measurements will be performed. This work is in progress.

References

- [1] E. F. Bertaut et al., J. Phys. Chem. Solids 21, 234 (1961)
- [2] G. Deng et al., Physical Review B 97, 085154 (2018)
- [3] A. Maignan et al., *Physical Review B* 97, 161106(R) (2018)
- [4] B.B. Liu et al., Materials Letters 164, 425 (2016)
- [5] Y. Fang et al., Scientific Reports 4, 3860 (2014)
- [6] E. Tailleur et al., Journal of Applied Physics 127,063902 (2020)
- [7] E. Fischer et al., Solid state communications 10, 1127 (1972)
- [8] H. Ehrenberg et al., *Physical Reviev B* 52, 13 (1995)

Etudes des distributions de compositions de la solution solide $U_{1-x} Zr_x O_{2\pm y}$ (Corium) lors de différents processus de refroidissements / solidifications

M. JIZZINI¹, E. BRACKX¹, R. GUINEBRETIÈRE², P. PILUSO³, D. Menut⁴

 ¹ CEA, DEN, DMRC, SA2I, LMAC, Marcoule, 30207 Bagnols sur Cèze, France
² Université de Limoges, Centre Européen de la Céramique, Institut de Recherche sur les Céramiques, IRCER, UMR CRNS 7315, 12 rue Atlantis 87068 Limoges Cedex, France
³ CEA, DEN, DTN, SMTA, LEAG, Cadarache, 13108 Saint Paul lez Durance CEDEX, France
⁴ Synchrotron SOLEIL, Ligne de lumière MARS, 91192 Gif-sur-Yvette, France Courriel : mohamed.jizzini@hotmail.com

Le corium, formé en cas d'accidents grave de réacteur nucléaire, est un matériau complexe issu de la fusion partielle ou totale à très haute température (T°>2000°C) d'un cœur de réacteur nucléaire et de son interaction avec les différentes barrières : gaines en zircaloy, cuve en acier, béton de l'enceinte de confinement. La connaissance de l'état solide du corium est fondamentale tant du point de vue de la progression de l'accident grave et de sa modélisation que du point de vue du démantèlement de réacteurs accidentés comme c'est le cas pour Fukushima. Les régimes de solidification de ce matériau à partir d'un état liquide peuvent varier en fonction des conditions de refroidissement qui peut être rapide, en cas d'interaction avec l'eau, ou lent, en cas d'interaction avec le béton de l'enceinte d'un réacteur.

Les coriums sont constitués pour une large part d'oxyde d'uranium et de zirconium. Ces oxydes forment une solution solide totale $U_{1-x} Zr_x O_{2\pm y}$ [1]. Ce travail vise à mettre en évidence les différents régimes de solidification et de formation des solutions solides de type $U_{1-x}Zr_xO_{2\pm y}$, hors équilibre ou à l'équilibre thermodynamique en fonction des régimes de refroidissement. Pour cela des échantillons ont été prélevés à différentes étapes de l'interaction entre un jet de corium prototypique liquides à T>2600K et l'eau dans l'installation PLINIUS/KROTOS du CEA de Cadarache. A l'issue de ce type d'interaction, des débris de différentes tailles sont formés. Ces solides se présentent alors sous forme de poudre avec des granulométries différentes selon les processus de fragmentation et explosion au contact de l'eau.

Nous avons étudié ces différents matériaux par diffraction des rayons X sur la ligne MARS du synchrotron SOLEIL. Les diagrammes de diffraction obtenus présentent un très fort élargissement des raies (voir figure 1) alors que la taille des cristaux observés par microscopie électronique est micrométrique. En accord avec des études antérieures [2,3], l'élargissement observé est lié à une distribution de composition cationique U/Zr qui varie suivant les différents régimes de solidification. Chaque pic de diffraction peut être traité comme une somme de pics élémentaires correspondant à une composition, et donc une distance inter-réticulaire, donnée. Nous avons ainsi déterminé, par cette approche établie initialement par C.R. Houska [4,5], pour chaque échantillon une distribution de composition (voir figure 2). Les diagrammes de diffraction ont été modélisés de façon globale à l'aide du logiciel MAUD [6]. La position angulaire de chaque pic a permis de remonter à la composition cationique via la valeur du paramètre de maille et la loi de Végard du système choisi [5]. Une forte corrélation entre les caractéristiques de la distribution de compositions cationiques et les régimes de solidification imposés au corium a pu être identifiée. Cette distribution cationique

engendre une hétérogénéité du solide, dont il va falloir déterminer l'échelle et le degré dans les études futures.

[1] Jacquemain D. et al., *"Les accidents de fusion du cœur des réacteurs nucléaires de puissance"*, *EDP. Sciences et Techniques*, 2013.

[2] P. Buisson, "Rôle de la distribution des compositions cationiques sur l'aptitude à la dissolution de combustibles MOX Caractérisation de la distribution par diffraction des rayons X sur poudre", Thèse université joseph Fourier – Grenoble 1, (1999)

[3] P. Piluso, G. Trillon, C. Journeau, "*The UO*₂-*ZrO*₂ system at high temperature (*T*>2000*K*): importance of the meta-stable phases under severe accident conditions", J. Nucl. Mat. 344, (2005), p 259–264.

[4] C. R. Houska C.R. Houska, Thin Solid Films, 25, (1975), p 451.

[5] C. R. Houska, J. Appl. Phys., 41, 1, (1970), p 69.

[6] L. Lutterotti, R. Ceccato, R. Dal Maschio, E. Pagani, "Quantitative analysis of silicate glass in ceramic materials by the Rietveld method", Mater. Sci. Forum, 87, (1998), p 278–281.

Abstract - CGE 2020

Long-term evolution of uranium speciation and mobility in lacustrine sediments

<u>Pierre Lefebvre</u> (1), Alkiviadis Gourgiotis (2), Arnaud Mangeret (2), Pierre Sabatier (3), Pierre Le Pape (1), Olivier Diez (2), Pascale Louvat (4), Nicolas Menguy (1), Pauline Merrot (1), Camille Baya (1), Mathilde Zebracki (2), Pascale Blanchart (2), Emmanuel Malet (3), Didier Jézéquel (4), Jean-Louis Reyss (3), John Bargar (5), Jérôme Gaillardet (4), Charlotte Cazala (2), Guillaume Morin (1)

- (1) Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 Sorbonne Université-CNRS-MNHN-IRD, Paris, France
- (2) Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV SEDRE/LELI, Fontenay-aux-Roses, France
- (3) Laboratoire Environnement, Dynamiques et Territoires de la Montagne (EDYTEM), UMR 5204 Université Savoie Mont-Blanc-Université Grenoble Alpes-CNRS, Le Bourget-Du-Lac, France
- (4) Université de Paris-Institut de Physique du Globe de Paris-CNRS, UMR 7154, Paris, France
- (5) Stanford Synchrotron Radiation Lightsource (SSRL), SLAC, Menlo Park, CA, USA

Uranium (U) is a toxic radionuclide which environmental dissemination must be limited. In this regard, understanding U immobilization mechanisms in reducing environments is essential for improving the management of radioactive waste and the remediation of contaminated sites. In particular, determining the long-term behavior of non-crystalline U(IV) species in (sub-)surface conditions is of growing importance, as these environmentally-relevant species have been recently showed to play a major role in U mobility. For this purpose, we investigated the evolution of U speciation over a plurimillennial period in naturally U-enriched sediments from Lake Nègre (alt. 2354 m, Mercantour, France) as an analogue of contaminated systems. Several sediment cores were sampled at 24 m of water depth and preserved under anoxic conditions. Bottom sediments were dated back to 3,300 cal BP. These organic- and Si-rich sediments display increasing U concentration with depth, from 350 to 760 μ g/g. Sequential ultrafiltration of surface waters and uranium isotopic ratios (²³⁸U/²³⁵U and (²³⁴U/²³⁸U)) of sediments and waters suggest that the deposition mode of U did not vary significantly with time, thus giving the opportunity to follow the effect of diagenesis on U speciation over more than 1000 years. Uranium L_{III}-edge X-Ray Absorption Near-Edge Structure (XANES) analysis shows that U is rapidly reduced in the upper sediment layers and is fully reduced at depth. Extended X-Ray Absorption Fine Structure (EXAFS) spectroscopy data at the U L_{III}-edge reveals that U speciation evolved with depth in the sediment core, suggesting an effect of diagenesis in anoxic conditions on U solid speciation. Our results may help to design long-term storage conditions that are able to enhance the formation of poorly soluble U species in U-contaminated soils and sediments.

LISTE DES INTERVENANTS

Nom	Prenom	Organismes	Villes	Mails
BENDEIF	EL EULMI	Cristallographie, Résonnance Magnétique et Modélisation, Université de Lorraine	Nancy	el-eulmi.bendeif@univ-lorraine.fr
BORDET	PIERRE	Institut Néel	Grenoble	pierre.bordet@neel.cnrs.fr
CABARET	DELPHINE	Institut de Minéralogie et de Physique des Milieux Condensés, Sorbonne Université	Paris	delphine.cabaret@impmc.upmc.fr
CHABOUSSANT	GREGORY	Laboratoire Léon Brillouin	Saclay	gregory.chaboussant@cea.fr
CHEVREAU	HUBERT	Synchrotron SOLEIL	Saint-Aubin	hubert.chevreau@synchrotron-soleil.fr
COATI	ALESSANDRO	Synchrotron SOLEIL	Saint-Aubin	alessandro.coati@synchrotron-soleil.fr
DAMAY	FRANCOISE	Laboratoire Léon Brillouin	Saclay	francoise.damay@cea.fr
ELKAÏM	ERIK	Synchrotron SOLEIL	Saint-Aubin	erik.elkaim@synchrotron-soleil.fr
HODEAU	JEAN-LOUIS	Institut Néel	Grenoble	hodeau@grenoble.cnrs.fr
ITIE	JEAN-PAUL	Synchrotron SOLEIL	Saint-Aubin	jean-paul.itie@synchrotron-soleil.fr
JACQUES	VINCENT	Laboratoire de Physique des Solides	Orsay	vincent.jacques@u-psud.fr
LAULHE	CLAIRE	Synchrotron SOLEIL, Université Paris-Sud	Saint-Aubin	laulhe@synchrotron-soleil.fr
LAUNOIS	PASCALE	Laboratoire de Physique des Solides	Orsay	launois@lps.u-psud.fr
MARANGOLO	MASSIMILIANO	Institut des NanoSciences de Paris, Sorbonne Université	Paris	marangolo@insp.jussieu.fr
PILLET	SEBASTIEN	Cristallographie, Résonnance Magnétique et Modélisation, Université de Lorraine	Nancy	sebastien.pillet@univ-lorraine.fr
RAVY	SYLVAIN	Laboratoire de Physique des Solides	Orsay	ravy@lps.u-psud.fr

LISTE DES PARTICIPANTS

Nom	Prénom	Organisme	Ville	e-mail
BASSEZ	Marie-Paule	Université de Strasbourg	Illkirch-Graffenstaden	marie-paule.bassez@unistra.fr
BAZZAOUI	Haytem	Conditions Extrêmes et Matériaux : Haute Température et Irradiation	Orléans	hayem.bazzaoui@cnrs-orleans.fr
BERTRAND	Adam	Laboratoire de Cristallograhie et Sciences des Matériaux	Caen	adam.bertrand@ensicaen.fr
BOUTEILLER	Hugo	CRISMAT (Laboratoire de Cristallographie et Sciences des Matériaux)	Caen	hugo.bouteiller@ensicaen.fr
CAO	Weiwei	Conditions Extrêmes et Matériaux : Haute Température et Irradiation	Orléans	weiwei.cao@cnrs-orleans.fr
CHOMMAUX	Thibault	Institut Prime	Chasseneuil-du-Poitou	thibault.chommaux@univ-poitiers.fr
FOWAN	Daniel	IRCER, Centre Européen de la Céramique	Limoges	danielfowan@yahoo.fr
JIONGO DONGMO	Jacqueline Nadine	CRISMAT (Laboratoire de Cristallographie et Sciences des Matériaux)	Caen	jacqueline-nadine.jiongo-dongmo@ensicaen.fr
JIZZINI	Mohamed	CEA-Marcoule	Bagnols-sur-Cèze	mohamed.jizzini@hotmail.com
JRONDI	Aiman	Ecole Nationale Supérieure de Chimie de Lille	Villeneuve d'Ascq	jrondi.aiman@gmail.com
LEFEBVRE	Pierre	Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie	Paris	pierre.lefebvre@sorbonne-universite.fr
LONCLE	Antoine	Synchrotron SOLEIL	Saint-Aubin	antoine.loncle@synchrotron-soleil.fr
MEDJKOUNE	Mehdi	Institut des Nanosciences de paris	Paris	medjkoune@insp.jussieu.fr
MOUMNI	Zied	ENSTA-PAris	Palsieau	moumni@ensta.fr
PRIVAULT	Gael	Institut de Physique de Rennes	Sonchamp	gael.privault@hotmail.fr
RIOS-SANTACRUZ	Ronald	Institut de biologie structurale	Grenoble	riossantacruz@etu.unistra.fr
SAIBI	Valentin	Institut de Chimie de la Matière Condensée de Bordeaux	Pessac	valentin.saibi@icmcb.cnrs.fr
SCHNEIDER	Cloe	CEA	Saint-Paul-Lez-Durance	cloe.schneider@cea.fr
VAYER	Florianne	ICMMO	Orsay	florianne.vayer@u-psud.fr
ZENASNI	Ghizlene	Mines Paristech	Evry	ghizlene.zenasni@mines-paristech.fr