Résolution de structures à partir de diagrammes de diffraction de poudres.

Erik Elkaïm

Ecole de Cristallographie 17-21 Octobre 2016

Les principales étapes

- Enregistrement du diagramme
- Indexation
- Détermination du groupe d'espace
- Extraction des intensités de Bragg
- Recherche de la structure
- Affinement
- Description de la structure

Diffraction Poudres - Monocristal

1 Cristal orienté

Poudre

Résolution de structures

- Si possible, diffraction de monocristaux car données expérimentales plus complètes.
- Si pas de monocristaux, poudre est la seule solution.
- Méthodes utilisées au départ très similaires à celle utilisées pour monocristaux.
- Méthodes mieux adaptées ont été développées
- Parallèlement, progrès des mesures
 - Détecteurs et sources.

Enregistrement du diagramme

- Choix de la source
 - Source de laboratoire
 - Compétitive grâce aux nouveaux détecteurs
 - Ne suffit pas si trop de raies en « overlap » ou absorption forte...
 - Synchrotron
 - Bien adapté, si raies fines, petite quantité de poudre
 - Choix de l'énergie
 - Montage « faisceau parallèle » avec analyseur
 - Neutrons
 - Position d'atomes légers/lourds (Hydrogènes)
 - Agitation thermique, taux d'occupation
- La collecte
 - Grands $sin\theta/\lambda$
 - Statistique à grands angles

Montage en faisceau parallèle

Avantages: Analyse angulaire: moins sensible Elimine fluorescences → meilleur rapport Signal/Bruit

Utilisation de la haute résolution

Fe₂PO₅

Fig. 1. Synchrotron and conventional X-ray diffraction profiles of selected peaks.

- Comparaison montage conventionnel vs montage haute résolution avec analyseur arrière
- Augmente la quantité d'informations disponibles et facilite l'indexation

Autres géométries/montages

From Bob He (Fundamentals of 2D X-ray diffraction)

Figure 4. Comparison of diffraction pattern coverage between point (0D), linear PSD (1D), and area (2D) detectors.

Diagramme de diffraction de poudre : Intensité = $f(2\Theta)$

diagramme à partir du scan d'un détecteur 2D

Figure 8. Detector position in the laboratory system $X_L Y_L Z_L$: D is the sample-todetector distance; α is the swing angle of the detector.

Détecteur CirPAD: Courbe et 2D

Static mode

Scanning mode

Textured materials Fast pole figures sin²(ψ) method

L'indexation

- Trouver le réseau
- Problème difficile surtout pour les réseaux non orthogonaux:
 - Dans le passé méthodes intuitives: actuellement nombreux programmes existent.
- Difficulté supplémentaire si impuretés ou raies absentes

Why Powders more difficult than Single Crystal?

L'indexation

- Détermination de la position des raies de Bragg: d_{hkl}
- $n_{hkl}^{*2=1/d_{hkl}^{2}=h^{2}a^{*2}+k^{2}b^{*2}+l^{2}c^{*2}+2hka^{*}b^{*}\cos\gamma^{*}+2klb^{*}c^{*}\cos\alpha^{*}+2hla^{*}c^{*}\cos\beta^{*}$
- $Q_{hkl} = h^2 A + k^2 B + l^2 C + 2hkD + 2klE + 2hlF$
- Simplifications
 - Cubique: $Q_{hkl} = (h^2 + k^2 + l^2)A$
 - Tetragonal: $Q_{hkl} = (h^2 + k^2) A + l^2C$
 - Hexagonal: $Q_{hkl} = (h^2 + hk + k^2) A + l^2C$
 - Orthorombique: $Q_{hkl} = h^2 A + k^2 B + l^2 C$
 - Monoclinique: $Q_{hkl} = h^2 A + k^2 B + l^2 C + 2hlF$
 - Rhomboédrique: $\overline{Q}_{hkl} = =(h^2 + k^2 + l^2)A + 2(hk+kl+hl)D$
- Indexation consiste à trouver A,B,C...F et h,k,l
- Résolution d'équations linéaires en A,B,C..F

Méthodes d'indexation et facteurs de confiance

- Essais et erreurs: Treor (Werner), puis N-Treor (Altomare et al)
 - Attribution d'indices (petits) aux quelques premières réflexions puis résolution d'équations linéaires avec inconnues A,B,C,..F
 - Test si ces paramètres permettent l'indexation des raies suivantes. Méthode sensible à la présence d'impuretés
- Monte Carlo: (MacMaille: A. LeBail)
 - Génération aléatoire de mailles, calcul de Q_{hkl} et comparaison avec la position des raies observées. Intensités observées peuvent aussi être utilisées.
- **Dichotomie**:(Dicvol: Boultif et Louer)
 - Variation des constantes de mailles (a,b,c,α..) entre des valeurs min et max par pas constant.Un domaine est retenu si pour chaque raie observée il existe un hkl tel que Q_{hkl} min et max entourent Qobs. Ce domaine est à son tour divisé en sous domaines etc...jusqu'à obtenir une maille candidate.
- **Figures de mérite** permettent de comparer les différentes solutions trouvées: M_N (De Wolff) et F_N (Smith et Snyder)
 - $M_{20} = Q_{20} / (2 < \Delta Q > N_{20})$
 - $F_N = (1/\langle \Delta 2\theta \rangle) (N/Ncalc)$

Détermination du groupe d'espace

- Manuellement après l'indexation
 - Raies absentes à bas angles
 - Ambiguité
 - Superposition
- Durant l'extraction ou même au cours de la résolution de structure

Extraction des intensités

- Essentiellement par méthode de LeBail (voir affinement de Rietveld):
 - Ajustement global des profils sans modèle de structure. (Full pattern matching).
 - Les positions des raies sont contraintes par les paramètres de maille.
 - Une fonction d'élargissement des profils est déterminée
 - L'intensité de chaque massif de raies superposées est répartie entre ses composantes(raies hkl) point de départ de la recherche de la structure.

Rappels

- $F_{hkl} = \int_{maille} \rho(\mathbf{u}) e^{2\pi h \mathbf{u}} d\mathbf{u} = \sum_i f_i e^{2\pi i (hx_i + ky_i + lz_i)} e^{-T} avec$ $T = B_i^2 / (\sin\theta/\lambda)^2$
 - \rightarrow F_{hkl} =|F | $e^{i\Phi}$
- $\rho(x,y,z) = 1/V \sum_{H} F_{hkl} e^{-2\pi i(hx+ky+lz)}$
- Pour une poudre
 - $I_{hkl} = kL_P m_{hkl} A |F|^2$
- Structure $\approx \rho(x,y,z)$ dans la maille
- Il faut donc retrouver les F avec leurs phases

La résolution de structure: différentes méthodes

- Méthodes directes
 - Détermination directe de la phase des facteurs de structures puis densité électronique obtenue par TF
- Méthode de Patterson
- Méthodes dans l'espace direct
 - Surtout si connaissance de fragments
 - Déplacement aléatoires de fragments dans la maille, calcul du diagramme et comparaison avec les observations (MonteCarlo, Recuit simulé..)

Méthodes directes

- A partir d'une bonne estimation des $|F_{hkl}|$
- Facteurs de structure normalisés
- Méthodes statistiques de détermination de la phase à partir de la distribution des intensités:
 - Mais intensités évaluées ne sont pas aussi fiables que pour monocristaux
 - Méthodes adaptées pour diagrammes de poudres(Programme EXPO2013: A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni et al. *J. Appl. Cryst.* 46, 1231-1235)
- Relations entre phases de Fs proviennent de l'atomicité et de la positivité de la densité électronique
 - par exemple relations entre phases de triplets de réflexions

Méthodes directes

- Facteurs de structure normalisés E, unitaires U:
 - $|E_h|^2 = |F_h|^2 / \sum f_j^2$
 - $U_h = F_h / \sum f_j \qquad |U_h| \leq 1$
- Relations entre phases:
 - Pour raies fortes
 - Triplets: $\Phi h + \Phi k + \Phi h k \approx 0$ (probabilité forte)
 - Quartets: $\Phi h + \Phi k + \Phi l + \Phi h k l \approx 0$
 - pour structure centrosymétriques, inégalités telles que:
 |U_h|² ≤ 0.5 (1+ U_{2h})
 - Propagation des phases = formule de la tangente (Karle et Hauptman) puis évaluation

$$- \tan (\Phi h) = \frac{\sum_{k} |Ek Eh - k| \sin(\emptyset k + \emptyset h - k)}{\sum_{k} |Ek Eh - k| \cos(\emptyset k + \emptyset h - k)}$$

Méthode de Patterson

- $P(\mathbf{u})=\int_{V} \rho(\mathbf{r}) \rho(\mathbf{r}+\mathbf{u}) d\mathbf{u}$ fonction d'autocorrélation de la densité
- On montre que $P(\mathbf{u}) = (1/V)\Sigma_h |F_{hkl}|^2 e^{-2\pi h \cdot \mathbf{u}}$
- Position des max de P(u) correspondent à vecteurs interatomiques
- Intensité des max $\sim Z_i^* Z_j$
- Si atomes lourds, pics les plus forts permettent de placer ces atomes.
- Ensuite utilisation de **cartes de Fourier-différence** pour compléter la structure.

Cartes de Fourier

- $F_{hkl} = \int_{maille} \rho(\mathbf{u}) e^{2\pi h \mathbf{u}} d\mathbf{u} = \sum_i f_i e^{2\pi i (hx_i + ky_i + lz_i)} e^{-T}$
- $\rho(\mathbf{x},\mathbf{y},\mathbf{z}) = 1/V \sum_{H} F_{hkl} e^{-2\pi i(hx+ky+lz)}$
- $\Delta \rho(x,y,z) = 1/V \sum_{H} (F_{hkl} (obs) F_{hkl} (calc)) e^{-2\pi i (hx+ky+lz)}$
- Les max de $\Delta \rho$ (cartes différences) correspondent (en principe) aux atomes manquants mais parfois difficiles...
- On attribue aux Fobs la phase des Fcalc..

À gauche : Série de Fourier « différence » intermédiaire. Coefficients de la série : $x_c(Pb)$ (H) $|F_v(H)| = x_c(Pb)(H)|F_c(Pb)$ (H)|. Contours : 5 $e/Å^3$. À droite, série « différence » résiduelle. Coefficients de la série : $x_{closal}(H)|F_s(H)| = x_{closal}(H)|F_{opolal}(H)|$. Contours : 0,5 $e/Å^3$.

J. Protas : Diffraction des rayonnements (Ed. Dunod)

Résolution dans l'espace direct

- Méthodes Monte-Carlo ou recuit simulé
 - Modèle de la molécule déplacé dans la maille
 - Peuvent fonctionner aussi ab-initio
 - Uniquement contenu de la maille
 - Programme FOX (R. Cerny, V. Favre-Nicolin)

Algorithme pour la méthode d'optimisation par 'recuit simulé'.

En gal plus lent que méthodes directes

Autres stratégies

• Charge flipping (Palatinus et al)

• Voir demo (N.Schoeni et G.Chapuis) à http://escher.epfl.ch/flip/

L'affinement de Rietveld

- Affinement des paramètres structuraux et de profils sur le diagramme expérimental (Fullprof J.Rodriguez-Carvajal)
- Les paramètres structuraux
 - Pour chaque atome
 - Position (x,y,z), agitation thermique(B ou Bij), taux d'occupation
- Les autres paramètres
 - Facteur d'échelle, paramètres de maille, orientation préférentielle
 - Fonction de profil, fonction d'élargissement avec 2θ, assymétrie
 - Le bruit de fond

Intensité diffractée par une poudre

- Intensité intégrée $I_h \sim (I_0 \lambda^3 / R) m_h Lp OA |F_h|^2$
 - $L= 1/(\sin\theta_B \sin 2\theta_B)$ facteur de Lorentz
 - $p=(1-t)+t\cos^2 2\theta$ facteur de polarisation t~0.05 pour synchrotron
 - A,O facteurs d'absorption et d'orientation préférentielle
 - R distance échantillon détecteur
 - m_h multiplicité de la raie hkl
- $I_h \sim k m_h Lp A |F_h|^2$, avec k facteur d'échelle
- Pour raie unique $y(2\theta)=y_i=I_h \Phi(2\theta-2\theta_B,\Gamma)+b_i$
 - $\Phi(2\theta-2\theta_B,\Gamma)$ fonction de profil normalisé de largeur Γ

L'affinement

- On cherche à minimiser $M = \sum_i w_i [y_i(obs) y_i(calc)]^2$
- $Y_i(calc) = \Sigma_{hkl} (I_{hkl} \Phi(2\theta_i 2\theta_{B,hkl}, \Gamma) + b_i)$
 - Souvent, $\Phi = \eta L + (1 \eta)G$ fonction pseudo-voigt
 - $\eta = \eta 0 + X 2 \theta$ paramètre de forme
 - $\Gamma^2(2\theta) = W + V \tan(\theta) + U \tan^2(\theta) + Ig/\cos^2(\theta)$ fonction d'élargissement la plus simple
 - U,V,W,Ig et X paramètres affinables
- Remarques:
 - Autres formulations avec des paramètres plus « physiques » sont utilisées.
 - Le profil mesuré est la convolution du profil « échantillon » avec le profil instrumental.
 - Rappels:
 - Formule de Scherrer $\beta(2\theta) \sim = 0.9 \lambda / Lcos\theta$
 - Microdéformation $\Delta 2\theta \sim = 4\varepsilon \tan(\theta)$

Fonction de résolution instrumentale (IRF)

Les facteurs d'accord

Pour les profils

- $R_{wp} = \left[\sum w_i (y_{obs,i} y_{calc,i})^2\right]^{0.5} / \left[\sum w_i (y_{obs,i})^2\right]^{0.5}$
- $R_p = \left[\sum |y_{obs,i} y_{calc,i}|\right] / \left[\sum |y_{obs,i}|\right]$
- $R_{exp} = [N-P]^{0.5} / [\sum w_i (y_{obs,i})^2] 0.5$
- G.O.F= R_{wp}/R_{exp}
- Sommes recalculées seulement sur les zones contenant des réflexions
- Sommes aussi calculées sans le bruit

Les facteurs d'accord

Pour la structure

- $R_B = \left[\sum_k |I_{obs,k} I_{calc,k}|\right] / \left[\sum_k |I_{obs,k}|\right]$
- $R_F = \left[\sum_k |F_{obs,k} F_{calc,k}|\right] / \left[\sum_k |F_{obs,k}|\right]$ Avec
 - $I_{obs,k} = I_{calc,k} \sum_{i} \Phi(2\theta_i 2\theta_{B,k})(y_{obs,i} b_i)/(y_{calc,i} b_i)$ pas directement mesurée.
- Ensemble des facteurs d'accord doit être considéré

Résultats

- Facteurs d'accord
- Représentation des diagrammes obs ,calc et différence
- Représentation de la structure, empilement
- Positions des atomes, distances et angles
 - Contrôle de ces distances
- Facteurs d'agitation thermique typiques
- Eventuellement microstructure

XRD and IR structural investigations of a special breathing effect in the MOF-type gallium terephthalate MIL-53(Ga).

Christophe Volkringer, Thierry Loiseau, Nathalie Guilloua, Gérard Férey, Erik Elkaïm and Alexandre Vimont Institut Lavoisier (Versailles) and Laboratoire de catalyse et spectrochimie (Caen).

Dalton Trans., 2009, 2241-2249

Affinement Rietveld

Composé nano-poreux

T. Loiseau et N. Guillou (Institut Lavoisier - Versailles)

Structure de $Mn_3(OH)_2(C_6H_2O_4S)_2$

Romain Sibille^{*,a}, Thomas Mazet^a, Erik Elkaïm^b, Bernard Malaman^a and Michel François^a Inorganic Chemistry, 2013, 52(2): 608–616

Diagramme Hte résolution enregistré sur Cristal ($\lambda = 0.7775$ Å)

Indexation \Rightarrow P2₁/c a = 3.4475 Å, b = 19.1368 Å, c = 11.0146 Å and β = 97.455° Résolution avec programme FOX (V. Favre-Nicolin)

Structure

Comparaison Labo - Synchrotron

Haute résolution permet aussi étude de la microstructure (Taille, contraintes)

Affinement multi-diagrammes

- Possibilité d'affiner sur plusieurs diagrammes
 - Neutrons et rayons X
 - Rayonnement synchrotron à plusieurs longueurs d'onde (effet anomal). f= f0+f '+if''
 - Position des hydrogènes
 - Taux d'occupations partiels de 2 éléments de numéros atomiques voisins.

Facteurs de diffusion anomale f' et f"

Diffraction résonnante: DAFS Diffraction Anomalous Fine Structure= spectroscopie en condition de diffraction Pickering et al. J. Am. Chem. SOC. 1993,115, 6302-6311

Operando studies of Lithium batteries

Collaboration with LRCS (Amiens) ,IMN (Nantes) and SOLEIL (XAS beamlines)

(ANR funded : PULSSE project)

Slow kinetics study to follow charge (discharge) of the battery with a time resolution of a 2-3mn

- Use of an imaging plate detector (MAR345)
- Design and construction of an electrochemical cell

Batteries Li / Electrolyte / LiFePO4 ANR PULSSE IMN(Nantes),LCRS(Amiens), SOLEIL

One XRD pattern (recorded within 10 sec.) every 3 min. Wavelength : λ = 0.727 Å

Affinement Rietveld de structures par diffraction de neutrons et rayons X F. Damay, E.Elkaim et G. Rousse

- Echantillon: Oxalate de Strontium
- Indexation diagramme synchrotron
- Gpe d'espace
- Extraction des intensités
- Affinement X
- Affinement neutrons
- Gfourier: placer les H (Deuterium)
- Fullprof Studio

Du diagramme de diffraction de poudre à la résolution de structure: principales étapes Erik Elkaim

- Enregistrement du diagramme
- Indexation
- Détermination du groupe d'espace
- Extraction des intensités de Bragg
- Recherche de la structure
- Affinement