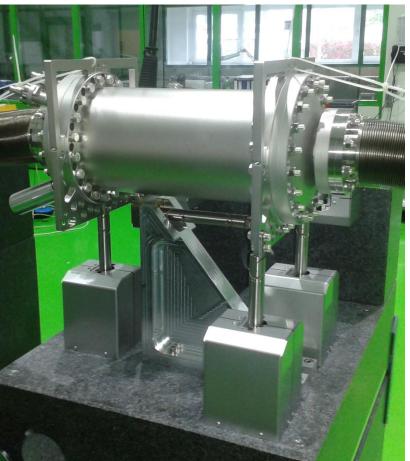


Kinematics for high stability mirror systems

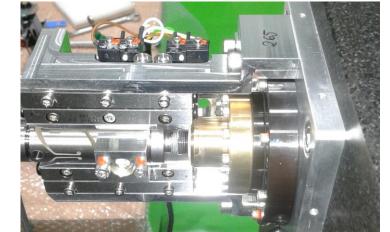
Combined motion control for a 5 axis mirror system by Dipl. Ing. Frank Leihbecher FMB Feinwerk und Messtechnik Berlin GmbH

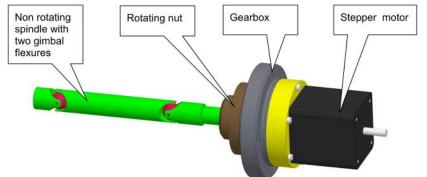

Combined multi axis motion control with GeoBrick /PMAC

Mirrors in synchrotron beamlines

Task: guiding synchrotron radiation to experiments or switching between different targets Difficulties: Very tiny angles and low vibration requirements

Mirror Chamber




• 5 moveable leg-drives

FMB Berlin

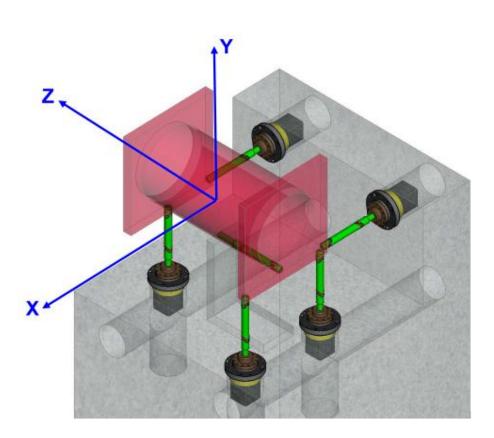
- 1 fixed leg
- granite foundation
- Flexure joints for all necessary movements
- +/- 5mm distance range of each legdrive
- +/- 10 mrad tilting angle limited by vacuum bellows

Leg drive

 High precision linear ball bearing slide

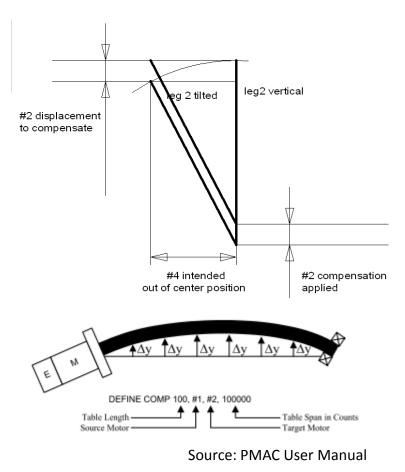
FMB Berlin

- Limit and overtravel switches
- 1nm resolution linear absolute optic encoder
- 1/100 harmonic drive gear
- 400/turn stepper motor


Motion controller HPMC-8

- 8 motor amplifier outputs
- 8 absolute or incremental encoder inputs
- Additional digital and analogue in/outputs
- Based on DELTA TAU GeoBrickLV motion ctrl.
- Internal Power Supply
- Embedded Computer

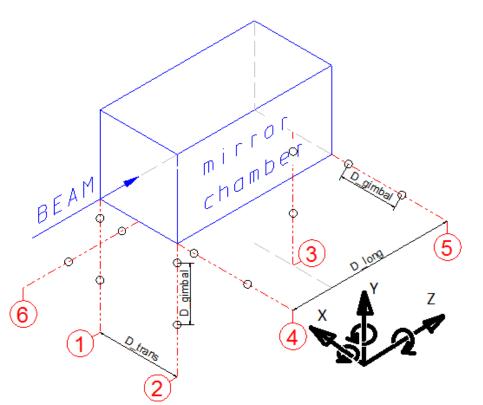
3-dimensional degrees of freedom


 Translation in X and Y direction

FMB Berlin

- Rotation around X axis (Yaw*)
- Rotation around Y axis (Pitch*)
- Rotation around Z axis (Roll*)
- * for a side bounce mirror

Combined multi axis motion control with GeoBrick /PMAC


Cross axis compensation movement

- Δy=f(x;D_gimbal)
- Calculated compensation values in Excelspreadsheat for PMAC compensation tables
- Y1 and Y2 comp. X4
- Y3 compensates X5
- X4 compensates Y2
- X5 compensates Y3

Kinematic calculations

- Development of kinematic calculations in another Excel sheet
- Forward kinematic: coordinate system to single drive position
- Inverse kinematic: Encoder position to coordinate positions

Kinematics for high stability mirror systems

FMB Berlin

Combined multi axis motion control with GeoBrick /PMAC

	А	В	С	D	E	F	G	Н	- I	J	K
1	Kinematic Ca	lculations	for 5-Leg Mirror 9	System							
2	including cor	npensatio	n for lateral displ	acement wh	ile RotZ motio	n					
3	without leve	r compens	ation which is do	ne with com	pensation tab	les on the mot	ion controlle	er			
4											
5	Explanations	:	User In	put		Calculated	Results				
6											
7			Paramete	r Input							
8	D (longitudin	nal)	300	mm							
9	D (transversa	al)	220	mm							
10	D (gimbal)		100	mm	noch nicht in	nplementiert					
11	RZ max	±	10	mrad	noch nicht in	nplementiert					
12											
13	Motor (Leg)		Input			Inter	mediate Res	ults		Calculated Positions	
14			Forward Kinema	ntic	calc. RotY	calc. RotZ	calc. RotX	calc. Vertical	calc. Lateral	Forward Kinemati	С
15	Y1	#1	2,943	mm		2,94296027	0	0		2,943	mm
16	Y2	#2	0,963	mm		0,962987	0	0		0,963	mm
17	Y3	#3	1,953	mm		1,952973635	0	0		1,953	mm
18	X1	#4	1,449	mm	0	1,448980439			0	1,449	mm
19	X2	#5	1,449	mm	0	1,448980439			0	1,449	mm
20	Z1	#6	0,000	mm	0		0		0	0,000	mm
21	Compound N	Novement	for a side bounce	Mirror						Inverse Kinematic	
22	RotZ	RZ	9,000	mrad		9				9,000	mrad
23	RotX	RX	0,000	mrad			0			0,000	mrad
24	RotY	RY	0,000	mrad	0					0,000	mrad
25	Vertical	TY	0,000	mm		1,952973635	0	1,952973635		0,000	mm
26	Lateral	ТΧ	0,000	mm	0	1,448980439			1,44898044	0,000	mm
27	Axial	TZ	0,000	mm	0		0		0	0,000	mm
28	shift rotation	axis in bo	th perpendicular	directions						Angular Limit	
29	RotZshiftY	RZSY	51,000	mm					absRXZ	9	mrad
30	RotZshiftX	RZSX	-217,000	mm					absRXY	0	mrad
31	RotXshiftY	RXSY	0,000	mm					absRYZ	9	mrad
32	RotXshiftZ	RXSZ	150,000	mm					absRXYZ	9	mrad
33	RotYshiftX	RYSX	0,000	mm							
34	RotYshiftZ	RYSZ	150,000	mm				only with Z-A	xis (Z1 #6) dr	ive possible	

Combined multi axis motion control with GeoBrick /PMAC

Implementation in Delta Tau PMAC

- PMAC code derived from Excel formulae
- First programmed PLC to calculate angles and positions from Motor positions (Inv. Kinematic)
- Implemented forward and inverse kinematic in PMAC code
- Tested with simulated drives on PMAC hardware
- Then using real Mirror chambers
- Verification with Interferrometer and Autocollimator Measurements using FMB's DriveAnalyzer software

Substitution File

	#define Rot_Z	Q1	; Roll angle of Mirror axis letter A M5141			
	#define Rot_X	Q2	; Yaw angle of Mirror axis letter B M5142			
	#define Rot_Y	Q3	; Pitch angle of Mirror axis letter C M5143			
	#define Vertical	Q4	; vertical displacement of Mirror axis letter U M5144			
	#define Lateral	Q5	; lateral displacement of Mirror axis letter V M5145			
	#define Axial	Q6	; Axial displacement of Mirror axis letter W M5146			
	#define Y1Pos	P1	; leg Y1 position in Counts			
	#define Y2Pos	P2	; leg Y2 position in Counts			
	#define Y3Pos	P3	; leg Y3 position in Counts			
	#define X1Pos	P4	; leg X1 position in Counts			
	#define X2Pos	P5	; leg X2 position in Counts			
	#define ZPos	P6	; leg Z position in Counts for now immobile			
	#define L LONG	P1001	;longitudal lever lenght			
	#define L LAT	P1002	;lateral lever lenght			
	#define ComRot_		; Commanded Roll angle[°] in motion program			
	#define ComRot	_	; Commanded Yaw angle[°] in motion program			
	#define ComRot	-	; Commanded Pitch angle[°] in motion program			
	#define ComVert	-	; Commanded Vertical displacement[mm] in motion			
	program					
	#define ComLate	eral P1007	; Commanded Lateral displacement[mm] in motion			
	program					
	#define ComAxia		; Commanded Axial displacement[mm] in motion			
program is allways zero v			hout Z-Motor			

 Defining substitute names for all Variables used in PLC and Kinematic calculations

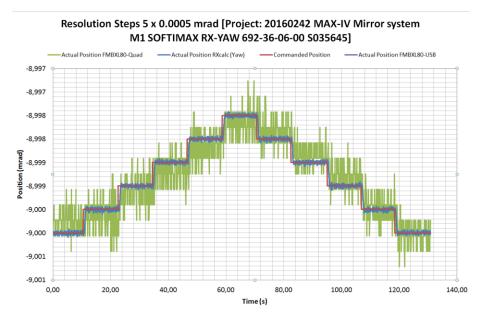
FMB Berlin

 Using the same names in Excel makes copying source code easy

Kinematics for high stability mirror systems

FMB Berlin

Combined multi axis motion control with GeoBrick /PMAC

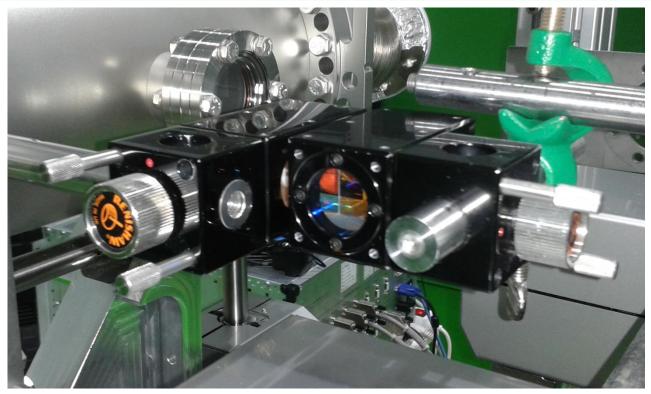

PLC and fwd/inv. kinematics File

;The following are PLC programs
;initial values #include "N:\software\pmac\5+1LegMirror\axisshift\5plus1LegMir_macro_substitutions_Axishift.p mc"
; Forward Kinematic PLC Programm Buffer for mirror position from Axis position reporting OPEN PLC 10 CLEAR
IF (Mot1HomCmplt=1 AND Mot2HomCmplt=1 AND Mot3HomCmplt=1 AND Mot4HomCmplt=1 AND Mot5HomCmplt=1) ; Properly position referenced ? PLCY1Pos=(M1ActPosCts+M1PosOffSet+M1PosComp)/(i108*32*Cts2mm) ;axis position in mm
PLCY2Pos=(M2ActPosCts+M2PosOffSet+M2PosComp)/(i208*32*Cts2mm) ;axis position in mm
 PLCZPos=(M6ActPosCts+M6PosOffSet+M6PosComp)/(i608*32*Cts2mm) ;axis position in mm
CalcRot_Z=ASIN((PLCY1Pos-PLCY2Pos)/L_LAT)/Milli ;Roll Position in mrad
CalcRot_X=ASIN((((PLCY1Pos+PLCY2Pos)/2)-PLCY3Pos)/L_LONG)/Milli ;Yaw Position in mrad
CalcRot_Y=ASIN((PLCX1Pos-PLCX2Pos)/L_LONG)/Milli ; Pitch position in mrad
CalcVertical=(((PLCY1Pos+PLCY2Pos)/2)+PLCY3Pos)/2- (SIN(1000*(ASIN((((PLCY1Pos+PLCY2Pos)/2)-PLCY3Pos)/L_LONG)/1000))*RotXshiftZ)- (SIN((1000*(ASIN((PLCY1Pos-PLCY2Pos)/L_LAT))/1000))*(-RotZshiftX)) ;vertical position in mm
CalcLateral=((PLCX1Pos+PLCX2Pos)/2)-(SIN(1000*(ASIN((PLCY1Pos- PLCY2Pos)/L_LAT))/1000)*(L_LAT/2+RotZshiftY))-SIN(ASIN((PLCX1Pos- PLCX2Pos)/L_LONG))*(RotYshiftZ) ; lateral position in mm CalcAxial=PLCZPos-(SIN(ASIN(((PLCY1Pos+PLCY2Pos)/2-PLCY3Pos)/L_LONG))*(L_LAT/-2- RotXshiftY))-SIN((ASIN((PLCX1Pos-PLCX2Pos)/L_LONG)))*(RotYshiftX)

- PLC converts motor position counts to engineering values and calculates Angles and positions
- also guards geometrically added angle values for exceeding boundaries and stopping coordinate system movement if necessary
- Simple motion program

Combined multi axis motion control with GeoBrick /PMAC

Drive Analyzer Tests



- DA is an automated test procedure for all kinds of motorized drives
- It comunicates with PMAC motion controllers to command movement and log encoder values or other measurement devices as well as status variables

Kinematics for high stability mirror systems

Combined multi axis motion control with GeoBrick /PMAC

Interferrometer optics mounted on mirror chamber for pitch angle movement measurement

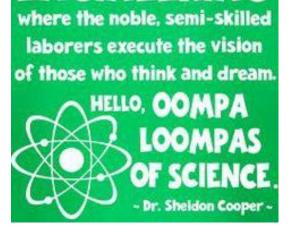
With a renishaw XL80 Laser interferrometer we checked if the calculated angles and distances match with real world measured values

Such tiny differences are difficult to measure close to the resolution limit of the XL80

Software Improvements

- In software protection against vacuum bellow damage through excessive bending
- Implementation of the ability to shift rotation axes
- This also improved the range of interferrometer measurements by moving the rotation axes into the interferometer optics

To-Do-List


- Improved angle limit behaviour, maybe by using the motor software limits
- Adding the 6th motorized axis for full compensation and axis shifting capabilities
- User interface in EPICS / TANGO or other GUI
- Writing motion programs for scanning and angle sweeps

Any Questions?

- Has someone experience in programming kinematics on an IcePAP controller?
- Has anyone some experience with negative backlash in linear guide drives with closed loop feedback?

Thank you!

