

Advanced

Monochromator

Control

ICALEPCS 2017 Barcelona | MOCRAF Workshop Advanced Monochromator Control - Jens Rekow | FMB GmbH

Outline

- Challenges
- Solutions
 - Hardware
 - Position Feedback
 - Motor Types
 - Interfaces
 - Software
 - Dynamic Parameter Scheduling & Dual PID
 - Kinematics & Continuous Scanning

Goals

- Short Settling Time
 - Close Coordination

High Resolution

High Speed

High Stability

FMB Oxford

ICALEPCS 2017 Barcelona | MOCRAF Workshop Advanced Monochromator Control - Jens Rekow | FMB GmbH

Monochromator **FMB Berlin** FMB Oxford

Typical high precision drive

Alternative designs

- direct drive
- piezo based actuator

Typical high precision drive

Heidenhain RON905UHV rotary encoder

- four readheads
- internal bearing
- 36000 lines per revolution
- accuracy: +/- 0.2 arcsec
- analog $11\mu A$ signal output

Original motion controller integration

- 4096-fold interpolation = 0.0081" resolution
- error compensation
- long transmission of analog signals
- slow read in through PC software
- fast closed loop control not possible

Direct motion controller integration

- 4096-fold interpolation = 0.0081" resolution
- less advanced error compensation
- long transmission of analog signals
- additional conversion error due to I/U conversion
- realtime read in and closed loop possible

Direct and digital motion controller integration

- 16384-fold interpolation = 0.002" resolution
- advanced error compensation
- short transmission of analog signals
- single channel input due to onboard handling of the four heads
- realtime read in and closed loop possible

Introduction of dual head systems

- 20000-fold interpolation = 0.0016" resolution
- advanced error compensation
- short transmission of analog signals
- two channel input
- realtime read in and closed loop possible

Dual head systems with Dual Signum Interface

- 20000-fold interpolation = 0.0016" resolution
- advanced error compensation
- short transmission of analog signals
- one channel input
- realtime read in and closed loop possible

Introduction of absolute encoders

- 0.0003" resolution
- advanced error compensation
- no transmission of analog signals
- two channel input
- slower realtime read in and closed loop possible
- synchronisation more difficult compare to incremental encoders

Performance assessment of feedback systems

Side by side comparism: Heidenhain RON versus incremental absolute Renishaw systems

ICALEPCS 2017 Barcelona | MOCRAF Workshop Advanced Monochromator Control - Jens Rekow | FMB GmbH

Error composition:

- graduation error
- installation error ۲
- sub divisional error
- jitter

Error composition:

- graduation error
- installation error ۲
- sub divisional error
- jitter

Countermeasures:

- picking an ideal working region
- compensation • tables

ICALEPCS 2017 Barcelona | MOCRAF Workshop Advanced Monochromator Control - Jens Rekow | FMB GmbH

Error composition:

Results

Heidenhain RON905UHV with Heidenhain EIB1512, incremental Renishaw TONiC, incremental Renishaw Resolute, absolute

Sub divisional error

- RON905UHV < 0.12"
- TONiC/Resolute < 0.02"

Jitter

- RON905UHV < 0.011"
- TONIC < 0.005" (255mm) / < 0.003" (417mm)
- < 0.01" (255mm) / < 0.005" (417mm) Resolute

< 1.28" / < 0.76"

Accuracy (360° / 20° partial arc)

- RON905UHV < 0.24" / < 0.17"
- TONIC 255mm < 1.30" / < 0.7"
- TONiC 417mm < 0.86" / < 0.5"
- Resolute 255mm
- Resolute 417mm < 0.94" / < 0.5"

Classic Design

Typical high precision drive

2. Motor control improvements

Motor Control

Improvements driving stepper motors

1500 rpm (3000rpm) 0.05°/sec (0.1°/sec)

Motor Control

Improvements driving stepper motors

Motor Control

Servomotor

4000 rpm 0.12°/sec

Smaller but sufficient resolution

- Higher speed
- More dynamic command
- Smooth driving throughout wide range of speeds
- More energy efficiency, reduced thermal effects
- Standstill jitter seems to be no issue

Piezo

Fine adjustment based on piezo stack

Piezo

Targets

Very fast small steps Decreased settling time Vibration damping

Implementation

MACRO interface Dual control loop Open servo algorithm

ICALEPCS 2017 Barcelona | MOCRAF Workshop Advanced Monochromator Control - Jens Rekow | FMB GmbH **FMB** Berlin

Dual PID loop running on the same position feedback

- PID set #1 for conventional motor
 - Parameter set for comparable slow reaction
- PID set #2 for piezo fine pitch
 - Parameter set for fast reaction
 - Input based on following error of PID #1
 - Notch filter to reduce oscillation
 - Use position bias on #1 to retain center position of #2

Piezo

ICALEPCS 2017 Barcelona | MOCRAF Workshop Advanced Monochromator Control - Jens Rekow | FMB GmbH

Piezo

FMB Berlin

October 2017

ICALEPCS 2017 Barcelona | MOCRAF Workshop Advanced Monochromator Control - Jens Rekow | FMB GmbH Dynamic modification of control parameters Using motion controller software PLC programs

Dynamic position loop parameter scheduling for

- Dealing with parasitic movements (sine bar)
- Handling different operation modes

Dynamic current loop settings

- Adapt magnetization current to movement mode
- Implement specific mechanical or thermal needs

FMB Oxford

FMB Oxford Continuous Scan A FMB Berlin

Energy move -

Photon energy move through coordinate system

- Scan speed in eV per second
- Implementation of forward & inverse kinematics
- Motion program to perform scan
- Actual energy reporting

Conclusions

- Position feedback
 - Fast, digital, higher repeatability (not accuracy)
- Servomotor option
 - Fast, dynamic, flexible
- Stacked Piezo Actuator
 - Dual control loop
 - Seamless integration (MACRO interface)
- Dynamic scheduling of PID parameters
- More powerful continuous scanning