MX applications at a low-emittance PETRAIII ring

Gleb Bourenkov EMBL-Hamburg 14.06.2017 Round beams workshop SOLEIL

Macromolecular crystal diversity

Synchrotron beams are set up to match: linear dimensions and shapes angular dimensions/spacing of Bragg diffraction maxima while tolerable time of experiment is a few munutes per sample

Crossing the length scales

150 µrad

Alcohol Oxidase crystals in yeast peroxisome Jakobi et al. IUCrJ. 2016 3, 88–95.

Space group I2₁3 Period a=230 Å Space group $P6_{1?5}$ Period c = 5520 Å

P14 Schema

Beamline P14 – microfocus mode

- FWHM Source
- Horizontal
 300 µm * 17 µrad
- Vertical

12 μm (on a paper) x 5 μrad
apparent V source size
20 to 30 μm
according to CRL(2:1)@10ms

- FWHM Focus (60:1)
- Horizontal
 - 7 µm * 1200 µrad
 - emittance x 1.6
- Vertical (46:1)
 5 µm x 500 µrad
 - emittance x 40

Serial Synchrotron Crystallography (2013)

Presentation of frozen suspension of micro-crystals to a micro-beam using precision diffractomter

Data collection using seialized helical scans

PETRA III	XFEL			
Crystal Size				
10⁷ unit cells [10 x less than smallest crystals used at synchrotrons before]				
Resolution				
2.8 Å	2.1 Å			
Material used				
15 nl	10 ml			
Result				
Models are identical within error				

Gati, Bourenkov, ... Schneider, Redecke, Chapman (2014) IUCrJ 1:87

XFEL

User-mode serial crystallography in crystralline suspensions: automated experiment in 3 min 12000前1-683

-3.0 AS FUNCTION

COMPLETENESS R-FACTOR

RESOLUTION

POSSIBLE

SUBSET OF INTENSITY DATA WITH SIGNAL/NOISE RESOLUTION NUMBER OF REFLECTIONS CO

UNIQUE

OBSERVED

195	18.17	16.87	98.9*	6	1.245
157	14.64	25.42	96.6*	-6	1.005
0.050	15.50	27.62	97.7*	ö	1.067
416	45 70	OF EN	97 9*	ž	1 000
4.07	15.00	20.12	00 7+	- 2	1.057
125	15.00	50.16	00.01	- 2	1.05/
482	13,40	34,62	97.6*		1,053
0.00	11.15	41.62	96.4*	6	0,907
007	8,54	49.8%	91.8*	-3	0,846
390	7.36	59,6%	93.9*	-4	0.781
657	6,20	72.4%	91.9*	2	0.782
078	5,31	87.7Z	91.0*	2	0,704
359	4,98	95.8X	88.1*	-4	0,701
680	4.15	110.7%	82.8*	11	0.700
923	3,60	129,6%	80.9*	4	0.674
'108	2,97	161,82	83.6*	Ó	0,630
291	2,67	102,97	65.5*	0	0,632
400	2.14	236.6%	61.9*	0	0.650
501	1.72	248.6%	52.3*	6	0.630
863	1.31	333.02	33.1*	11	0,620
632	0.87	372.2%	4.2	-4	0,585
219	6 10	59 02	97 3+	2	0.757

Definition of the R.O.I. and scan parameters

Serial crystallography in-situ, mesophase crystallization

Proton-coupled oligopeptide transporter PepTSt (*Str. thermophilus*)

Schneider, Löw, Meijers Marquez, Cipriani

In-cellulo serial crystallography in-vivo & cryo

Insect cells with crystalline recombinant protein

Redecke, Rudolph, Schönherr

Pump-probe serial crystallography on P14

- M-Chip (25000 holes)
- 30 Hz -> 40 60000 frames/hr

Eike Schulz, Rike Müller-Werkmeister, Dwayne Miller, MPISDM Hamburg

Time-resolved SSX on P14

- first successful experiments in 2016
- enzyme substrate uncaging
- high resolution

Eike Schulz, Rike Müller-Werkmeister, Dwayne Miller, MPISDM Hamburg

Beamline extension with dedicated timeresolved SSX with a permanent laser installation

Scaling the serial micro-crystallography

- Flux density is a current limitation
 150 ms life time *vs* 1.5 ms frame cycle of a standard detector
- 100 fold smaller beam area translates into 10 fold speed up and 10 fold background reduction (CatB example).
- All instrumentation and methods are in place, no mechanics issues etc
- Needs both smaller horizontal emittance and coherence-preserving optics

Tailoring beam to the sample

10 µm

40 kDa 10⁷ unit cells

100 µm 1 MDa 10¹² unit cells

"regular" MX beamline

High flux density in a large area

Top-Hat beam

<2% intensity r.m.s.d.

Full energy range

full PETRAIII beam is accepted by the lens

Be, R=500 μ m R₀=650 μ m

17/07/17

Tailored beam: application example Human 20S Proteasome – key target for tumor grows restriction

50000 atoms 3 min experiment -10¹⁵ photons – resolution 1.8 Å 10⁷ data points (Bragg reflections) - 6 10⁵ unique

Human 20S Proteasome: EM and Crystallography

- Left: P. C. da Fonseca, E. P. Morris, Cryo-EM reveals the conformation of a substrate analogue in the human 20S proteasome core. *Nat Commun* **6**, 7573 (2015).
- **Middle:** W. Harshbarger, C. Miller, C. Diedrich, J. Sacchettini, Crystal structure of the human 20S proteasome in complex with carfilzomib. *Structure* **23**, 418-424 (2015).
- **Right:** Schrader, Hanneberg, Schneier, Stark, Mata, Tittmann, Bourenkov, Chari, The inhibition mechanism of human 20S proteasomes enables next-generation inhibitor design *Science* **353** (2016)

Core Mediator structure at 3.4 Å extends model of transcription initiation complex

Kayo Nozawa¹, Thomas R. Schneider² & Patrick Cramer¹

248 | NATURE | VOL 545 | 11 MAY 2017

a PILATUS 6M detector, and on beamline PX1 at the Swiss Light Source in Villigen, Switzerland, using an EIGER 16M detector. Resolution higher than 4 Å was obtained at EMBL beamline P14 in Hamburg, Germany, using a homogeneous X-ray beam of 200 µm × 200 µm obtained via compound refractive lenses. A sulfur-single wavelength anomalous diffraction (S-SAD) data set

Ideal MX beamline?

- the beam is collimated to a maximum usable size (<~300 µm)
 -> no flux loss on the focusing lens
- which is used refocuse down to a (high-)-sub-1µm (diifraction limited, focal distance >~ 1m, divergence ~300 µrad)
- Stepwise adjustable top-hat beam (few µm step), in a full range of dimensions. Suitable for anomalous diffraction.

Acknowledgements

- Thomas Schneider & EMBL P3MX
- EMBL Hamburg Instrumentation
- EMBL Grenoble Instrumentation
- Henry Chapman, CFEL Hamburg
- Arwen Pearson, Hamburg University
- Gunter Schneider, Robert Schnell, Karolinska, RAC
- Ashwin Chari, Holger Stark, MPIBC Göttingen
- Anatoly Snigirev, Kaliningrad University
- Beamline Users: Lars Redecke, Dwayne Miller, Kayo Nozawa, and others

