Introduction to Macromolecular Crystallography and Round Beams

Gwyndaf Evans Diamond Light Source gwyndaf.evans@diamond.ac.uk

Introduction

- Macromolecular crystallography has played a key role in our understanding of biological systems over the last 40-50 years.
- In the last 20-30 years synchrotron radiation, first parasitic, and now purpose generated has played the largest role in the success of structural biology

14th June 2017

PDB depositions

Yearly Growth of Total Structures

Yearly Growth o

Yearly Growth of Structures Solved By X-ray number of structures can be viewed by hovering mouse over the bar

Protein Data Bank structures by method

• Macromolecular crystallography is by far the most successful method for structure determination

		Molecule Type							
		Proteins	Nucleic Acids	Protein/NA Complexes	Other	Total			
Exp. Method	X-ray	109653	1846	5580	4a	117083			
	NMR	10398	1209	241	8	11856			
	Electron Microscopy	1115	30	400	0	1545			
	Hybrid	102	3	2	1	108			
	Other	192	4	6	13	215			
	Total	121460	3092	6229	26	130807			
14th June 201	7	SOLEIL Round Beam Workshop							

Impact of synchrotron radiation on MX

14th June 2017

SOLEIL Round Beam Workshop

	· · · · · · · · · · · · · · · · · · ·		
	••••••	••••••	
		2	
·			·.
			ан _н . к к

14th June 2017

14th June 2017

Crystals come in all shapes and sizes

SOLEIL Round Beam Workshop

14th June 2017/

MX Trends in last decade

- Micro/nano-crystallography
 - use of multiple crystals per data set
- Room temperature and in situ crystallography
- Serial crystallography at both XFELs and Synchrotrons (see next talk by Bourenkov)
- Ultra-High throughput (seconds per complete data set)

- data collection at up to 1 kHz frame rates

Microcrystallography

- Crystals dispersed on a micromesh
 - density of crystals on mesh regulated by slurry concentration
- Residual liquid wicked or blotted away
- Micromesh cryocooled and mounted on goniometer with mesh plane perpendicular to beam
- Mesh area divided into 'manageable' sized regions of ~100x100um
- raster scanning to locate best hits
 - very fast due to shutterless scanning
 - 200 grid points in about a minute?
 - data collection from best hits move to next region
 - Typical parameter
 - 0.05 or 0.1 deg images with between 1 10 degs per crystal depending on size
 - 1 sec/deg is typical with between $\sim 10^{11} 10^{12}$ ph/s (4 10 um size)

14th June 2017

CPV17 ~ 1 µm³ crystals

TEM image courtesy of Geoff Sutton, University of Oxford Division of Structural Biology

228 recidues Weak data with very low background!

	8	1	4	9	4	3	1	5	3		1	2	5	0	1	3	0	3	3
	3	0	5	5	5	5	4	2	1		2	3	1	1	2	1	4	2	3
	2	2	2	4	7	2	5	3	1		2	0	2	3	2	1	1	1	2
	2	2	2	13	17	15	11	4	3		2	3	3	6	8	4	0	2	2
	5	2	1	8	24	21	15	6	3		2	0	3	9	13	2	1	2	0
	2	3	3	4	6	12	10	2	4		3	5	0	3	3	3	1	3	2
-	5	1	5	1	6	5	5	1	8		4	0	2	4	1	0	1	1	1
	4	5	2	4	3	2	1	3	3	-	1	3	4	1	3	1	1	3	2
	6	4	2	3	4	2	3	5	1		2	0	1	4	4	3	4	2	1

14th June 2017

ARTICLE

Received 5 Nov 2014 | Accepted 28 Jan 2015 | Published 9 Mar 2015

DOI: 10.1038/ncomms7435

OPEN

Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data

Helen M. Ginn¹, Marc Messerschmidt^{2,†}, Xiaoyun Ji^{1,3}, Hanwen Zhang¹, Danny Axford⁴, Richard J. Gildea⁴, Graeme Winter⁴, Aaron S. Brewster⁵, Johan Hattne⁵, Armin Wagner⁴, Jonathan M. Grimes^{1,4}, Gwyndaf Evans⁴, Nicholas K. Sauter⁵, Geoff Sutton¹ & David I. Stuart^{1,4}

The X-ray free-electron laser (XFEL) allows the analysis of small weakly diffracting protein crystals, but has required very many crystals to obtain good data. Here we use an XFEL to determine the room temperature atomic structure for the smallest cytoplasmic polyhedrosis virus polyhedra yet characterized, which we failed to solve at a synchrotron. These protein microcrystals, roughly a micron across, accrue within infected cells. We use a new physical model for XFEL diffraction, which better estimates the experimental signal, delivering a high-resolution XFEL structure (1.75 Å), using fewer crystals than previously required for this resolution. The crystal lattice and protein core are conserved compared with a polyhedrin

diamond 😔

14th June 2017/

Table 1 XFEL data collection and ref	inement statistics.	Table 2 Synchrotron data co statistics.	llection and refinement
	CPV17		
Data collection			CPV17
Space group	123	Data collection	
Cell dimensions		Space group	123
a, b, c (Å)	106.1, 106.1, 106.1	Cell dimensions	
α, β, γ (°)	90, 90, 90	📶 a, b, c (Å)	104.9, 104.9, 104.9
Resolution (Å)	28.30-1.75(1.79-1.75)*	α, β, γ (°)	90.0, 90.0, 90.0
R _{pim} (%)	7.4 (33.8)	Resolution (Å)	74.16-2.20 (2.26-2.20)*
R _{split} (%)	11.8 (58.4)	R _{merge} (%)	66.5 (325.9)
CC _{1/2}	98.0 (38.6)		6.4 (1.4)
Completeness (%)	100 (100)	Completeness (%)	99.9 (100.0)
Redundancy	52.4 (11.1)	Multiplicity	47.8 (25.4)
Refinement		ar Refinement	
Resolution (Å)	28.36-1.75	It Resolution (Å)	74.16-2.20
No. of reflections	20,122	No. of reflections	9,376
R _{work} /R _{free}	12.2/15.4	R _{work} /R _{free}	14.7%/19.9%
No. of atoms		No. of atoms	
Protein	1,914	Protein	1,907
Ligand/ion	32	rc Ligand/ion	32
Water	174	FE Water	146
B-factors		dı B-factors	
Protein	23.7	rc Protein	22.5
Ligand/ion	34.4	_{iy} Ligand/ion	50.0
Water	32.7	н Water	32.2
R.m.s. deviations		r R.m.s deviations	
Bond lengths (Å)	0.010	ne Bond lengths (Å)	0.013
Bond angles (°)	1.39	Bond angles (°)	1.675
CPV17, CPV type 17; XFEL, X-ray free-electron laser. Number of crystals used: 5,554. *Highest-resolution shell is shown in parenthesis.		CPV17, CPV type 17. Number of crystals used: 768. *Highest-resolution shell is shown in parenthe	sis.

Structure of class B GPCR corticotropin - releasing factor receptor 1 K. Hollenstein, J. Kean, A. Bortolato, R. K. Y. Cheng, A. S. Doré, A. Jazayeri, R. M. Cooke, ARTICLE

Structure of class B GPCR corticotropinreleasing factor receptor 1

Kaspar Hollenstein¹, James Kean¹, Andrea Bortolato¹, Robert K. Y. Cheng¹, Andrew S. Doré¹, Ali Jazayeri¹, Robert M. Cooke¹, Malcolm Weir¹ & Fiona H. Marshall¹

Structural analysis of class B G-protein-coupled receptors (GPCRs), cell-surface proteins that respond to peptide hormones, has been restricted to the amino-terminal extracellular domain, thus providing little understanding of the membrane-spanning signal transduction domain. The corticotropin-releasing factor receptor type 1 is a class B receptor which mediates the response to stress and has been considered a drug target for depression and anxiety. Here we report the crystal structure of the transmembrane domain of the human corticotropin-releasing factor receptor type 1 in complex with the small-molecule antagonist CP-376395. The structure provides detailed insight into the architecture of class B receptors. Atomic details of the interactions of the receptor with the non-peptide ligand that binds deep within the receptor are described. This structure provides a model for all class B GPCRs and may aid in the design of new small-molecule drugs for diseases of brain and metabolism.

Structure of class B GPCR corticotropin - releasing factor receptor 1

K. Hollenstein, J. Kean, A. Bortolato, R. K. Y. Cheng, A. S. Doré, A. Jazayeri, R. M. Cooke, M. Weir and F. H. Marshall Nature (2013) **499** 438-443.

Crystals between 5 - 15 µm in dimension

Structure of class B GPCR corticotropin - releasing factor receptor 1

K. Hollenstein, J. Kean, A. Bortolato, R. K. Y. Cheng, A. S. Doré, A. Jazayeri, R. M. Cooke, M. Weir and F. H. Marshall Nature (2013) **499** 438-443.

Crystals between 5 - 15 µm in dimension

Grown in LCP - invisible once harvested and cryo-cooled.

Structure of class B GPCR corticotropin - releasing factor receptor 1

K. Hollenstein, J. Kean, A. Bortolato, R. K. Y. Cheng, A. S. Doré, A. Jazayeri, R. M. Cooke, M. Weir and F. H. Marshall Nature (2013) **499** 438-443.

Crystals between 5 - 15 µm in dimension

Grown in LCP - invisible once harvested and cryo-cooled.

Experimental strategy

Grid scan over entire loop with attenuated beam to locate crystal.

For small crystals (~5 µm) reduce beamsize, and then repeat grid scan around sweet spot from gridscan #1 before collecting data *Structure determined to 3 Å resolution using 35 crystals*

14th June 2017

Early in situ setup on Diamond I24

Plate mounted at 0°

Plate mounted at tilted angle

14th June 2017

Which beam parameters matter?

- Beam spot size and shape at the sample position
 - matching beam to crystal size and shape to reduce background scatter from surrounding material
 - need optics that can allow beam size to be varied independently vertically and horizontally over 1-2 orders
 - e.g. I24 Diamond 5 50 um; VMXm Diamond 0.5 10 um
- Beam divergence
 - confining diffracted beam spots to match detector pixel size thereby reducing impact of measured background on measurement signal to noise
- X-ray energy tuneability
 - tune X-ray energy to important heavy atom absorption edges (5 20 keV)
 - benefit from effects such as photoelectron escape to reduce radiation damage > 20 keV)
 - Band-width of ID harmonics (for pink beam experiments using multilayer monochromators)

diamond

- to gain an order of magnitude flux increase for time-resolved serial crystallography experiments
- Bunch timing (less so unless very, very high brilliances are available)

14th June 2017/

Matching your beam to your sample

AcMNPV polyhedra crystals approx $5 \times 5 \times 5 \ \mu m^3$ in size were mounted on a micromesh grid Data were collected with two beamsizes: $8 \times 8 \ \mu m^2$ and $4.5 \times 5 \ \mu m^2$

14th June 2017/

Matching your beam to your sample

14th June 2017

 $4.5\times5\,\mu m^2$

SOLEIL Round Beam Workshop

.

Low divergence

A22 Foot and mouth disease virus measured on I24 at Diamond

Beam defocused to 30×30 µm² exposure time 3.05 ms (exposure period 4ms)

14th June 2017/

Matching beam divergence to detector properties

- Current state-of-the-art 2D pixel-array detectors for crystallography have pixel sizes of ~ 50 – 75 microns
- To record data extending to high resolution we position detectors at between 200 and 500 mm from sample
- This means that divergences of beams at sample should be ~< 100 urads

(Future advances in detector technology may drive this number down)

14th June 2017/

Current issues

- Currently for many MX beamlines the vertical (electron beam) X-ray source size is much smaller that required
 - X-ray optics are limiting factor in achieving small vertical beams at sample (not vert. source)
 - creating larger beams to match sample size is not straightforward (in fact it is still a challenge for many beamlines)
 - CRLs provide good options
- Large horizontal source size means very large demagnification ratios 50-100:1 resulting in high divergences > 500 urad

also reduced space for end-station components
Large mirrors (~1m) are required to capture all available flux

14th June 2017

Could round beams help (or more generally, versatility in e-beam parameters)?

- Trading off vertical beam size against horizontal to create a more isotropic source shape would potentially simplify optical configurations
- A reduced overall emittance would hopefully keep horizontally divergence to acceptable levels (< 0.1mrad)
 - mirror optics would be smaller
 - required acceptance for in-line optics (CRLs etc) are smaller
 - working distance at sample larger
- Can machine optics and X-ray optics work together to create clean (structureless) and variable beam shapes and sizes, low divergence X-ray beams at the sample

 fast changes of e-beam parameters could provide fast changes of X-ray beam parameters at sample?

14th June 2017

Acknowledgments

 Thanks to colleagues in the MX group at Diamond Light Source for contributing slides

THANK YOU FOR YOUR ATTENTION

diamond

14th June 2017/