Synchrotron beamline designs

Thierry Moreno Optics Group, SOLEIL Synchrotron

Outline

- Simulation tools
- Example of beamline design
 - undulator source
 - crystal monochromator
 - focusing stage

• Conclusions

Simulation tools

• The ray-tracing SPOTX

- geometrical ray-tracing + dynamical calculation of synchrotron sources (far field) & mirrors, multilayers, crystals, gratings
- full optical simulation of soft and hard X-rays synchrotron beamlines in one go
- thermal deformations, LTP & interferometric measurements, 4th order polynomial surfaces
- electron beam propagation (first order)
- well adapted to evaluate the geometrical aberrations produced by sources and optical shapes
- incoherent : doesn't take into account the beam coherence

Simulation tools

• SOLEIL, E₀ = 2.75 GeV, BM = 1.72 T

BM = Ray tracing (out of diffractive areas)

User's specifications (2002)

Spectral range : E = 5 - 15 keV
 Spot size : Ø ≈ 100 µm FWHM
 Divergence < 350 µrad FWHM
 Spectral resolution ≈ 10⁻⁴
 Harmonics rejection < 10⁻³

Distance focusing optics - sample \approx 3 m

Beamline equipment

Source : U20 undulator on <u>a short section</u> Monochromators : channel-cut Si111 **RMS** values

σ _x (μm)	σ _z (μm)	σ' _x (µrad)	σ' _z (µrad)
388	8.11	14.5	4.6

Focusing optics : Kirkpatrick-Baez (≈ 300 & 200 mm CA)

Round beams, SOLEIL, June 14-15, 2017

Undulator (U20)+ diaphragm (1×0.5 mm H×V)

They define the optical axis & aperture of the beamline

Undulator (U20)+ diaphragm (1×0.5 mm H×V)

They define the optical axis of the beamline

Undulator (U20)+ diaphragm (1×0.5 mm H×V)

They define the optical axis of the beamline

Undulator (U20)+ diaphragm (1×0.5 mm H×V)

E (eV)

Channel-cut/DCM (Si111)

Bragg law + spectral resolution

$$m \lambda = 2 \times d \times \sin(\theta_{BRAGG})$$

$$E(eV) = 12398.52/\lambda(\text{Å})$$

$$\Delta E/E = (\Delta w \otimes \Delta z')/tan(\theta_{BRAGG})$$

m = 1, 3.. for Si111
Si111 surfaces in symetric configuration

 θ_{BRAGG} = 9.176° @ 12.4 keV

Channel-cut/DCM (Si111)

KB mirrors & focused image

To focus the beam on the sample & crystal harmonics rejection

(variable) elliptical profiles fixe grazing angle = 4.1 mrad coating : Rh (dens@93%) 300 mm/ 200 mm mirror lengths

- Harmonic rejection
- 5 6 keV : crystal detuning (or Si stripe) 6 – 15 keV with the Rh stripe

KB trans ≈ 80% (without the curvature)

KB mirrors & focused image

With gaussian slope errors

2017

0

-100

-50

0

position (µm)

Thierry Moreno

100

50

12405

Round beams, SOLEIL, June 14-15, 2017

Mirrors manufacturing defects

KB mirrors & focused image

Mirrors manufacturing defects

KB mirrors & focused image

🛑 🖉 100 μm FWHM @ 12.4 keV

With real slope errors

Mirrors manufacturing defects

Low frequencies : manufacturer slope errors with fixed phases

Vertical focusing mirror (Swing): measures

Round beams, SOLEIL, June 14-15, 2017

Thierry Moreno

Round beam comparison (conclusion)

@ diaphram (11.7 m / source) : E = 12.4 keV

@ sample : E = 12.4 keV

Sample location	Present	upgraded
Flux (ph/s)	7×10 ¹²	1.1×10 ¹³
size (µm FWHM)	80×20 (H×V)	3×3 (H×V)
div (µrad FWHM)	350×280 (H×V)	330×250 (H×V)
Δ E (eV) FWHM	2.5 eV	2.5 eV

Round beams, SOLEIL, June 14-15, 2017

Acknowledgements

Mourad Idir for the collaboration in the design of hard X-ray beamlines at Soleil

Andy Thomson and the PX1 beamline team for the collaboration during the development of the PX1 beamline

Muriel Thomasset & Sylvain Brochet for LTP measurements

Florian Meneau & SWING beamline team for the collaboration in mirror slope measurements

Thank you for your attention