Round Beam Workshop

Soleil, 29 14-15 June 2017

PHOTON BEAM FROM AN UNDULATOR IN THE CASE OF AN EMITANCE ADAPTER

J.Chavanne, P. Raimondi ASD, ESRF

- Ideal undulator photon beam: Single electron emission
- Photon beam with electron beam
- Case of emittance adapter
- Possible undulator schemes with emittance adapter

SINGLE ELECTRON EMISSION

Undulator with length L, photon wavelength λ_n (harmonic # n)

r.m.s. photon beam divergence:

$$\Sigma'_0 \approx \sqrt{\frac{\lambda_n}{2L}}$$

r.m.s. source size:

$$\Sigma_0 \approx \frac{\sqrt{2\lambda_n L}}{2\pi}$$

Estimates from numerical simulations (second order moment from 2D profiles)

Photon beam phase space area:

$$\varepsilon_i = \Sigma_0 \Sigma_0^{'} \approx \frac{\lambda_n}{2\pi}$$

Intrinsic beta function of undulator:

$$\beta_i = \frac{\Sigma_0}{\Sigma_0'} \approx \frac{L}{\pi}$$

UNDULATOR BEAM WITH REAL ELECTRON BEAM

Resulting photon beam phase space: convolution of single electron emission with electron beam distribution

$$S_{x,z} = \Sigma_{x,z} \Sigma'_{x,z} = \sqrt{\left(\varepsilon_{x,z}\beta_{x,z} + \frac{\lambda_n L}{2\pi^2}\right)\left(\frac{\varepsilon_{x,z}}{\beta_{x,z}} + \frac{\lambda_n}{2L}\right)}$$

$$m_{x,z} = \frac{\beta_{x,z}}{\beta_i}$$

$$S_{x,z} = \frac{\lambda_n}{2\pi} \sqrt{\left(e_{x,z}m_{x,z}+1\right)\left(\frac{e_{x,z}}{m_{x,z}}+1\right)}$$

Assumptions/approximations:

- Undulator at the waist of electron beam in ID straight
- Impact of energy spread not taken into account
- Photon energy ~ on axis resonance (no detuning)

BETA MATCHING UNDULATOR-ELECTRON BEAM

 $S_{x,z} / \varepsilon_i = \sqrt{\left(e_{x,z}m_{x,z} + 1\right)\left(\frac{e_{x,z}}{m_{x,z}} + 1\right)}$

for constant emittance *S* is minimum for m=1 (i.e. $\beta = \beta_i \approx \frac{L}{\pi}$)

EMITTANCE ADAPTER

A.W. Chao, P.Raimondi, SLAC-PUB-1408 R. Brinkmann, Proc. EPAC 2002, Paris, France

Flat beam with

- horizontal emittance \mathcal{E}_x
- vertical emittance $\varepsilon_z = r\varepsilon x$ $r \ll 1$

(i.e typical electron beam in 3rd generation light source)

ROUND ELECTRON BEAM IN EMITTANCE ADAPTER

Apparent emittance
$$\varepsilon_r \approx \varepsilon_x \sqrt{r}$$

Rms size

$$\sigma_r \approx \sqrt{\varepsilon_x \beta_L / 2}$$

Rms divergence σ'_r

$$\sigma_r \approx \sqrt{2 \epsilon_z / \beta_L}$$

Effective beta function

$$\beta_r = \frac{\sigma_r}{\sigma_r} = \frac{\beta_L}{2} \sqrt{\frac{\varepsilon_x}{\varepsilon_z}} = \frac{\beta_L}{2\sqrt{r}}$$

 $\beta_L = 2p_0 / eB_s$ Larmor betatron function in solenoid

		ESRF	SOLEIL	ESRF-EBS
Round beam Flat beam	E [Gev]	6	2.75	6
	$\varepsilon_{x,z}[pm]$	4000/5	4000/5	132/5
	$\beta_{x,z}[m]$	37.2/3	5/8	6.8/2.7
	$\sigma_{x,z}[\mu m]$	385/3.8	148/6.3	30/3.7
	$\sigma'_{x,z}[\mu rad]$	10.3/1.3	27/0.8	4.4/1.4
	B _s [T]	3	3	3
	$\beta_L[m]$	13.2	6.05	13.2
	$\varepsilon_r[pm]$	140	140	11.5
	$\beta r[m]$	187	86	76
	$\sigma_r[\mu m]$	162	110	29.5
	$\sigma_r[\mu rad]$	0.87	1.3	0.39

Solenoid field 3 T

The European Synchrotron

UNDULATOR BRILLIANCE

Photon Energy

Undulator: staggered undulator Period 22 mm, L=2 m, K=1.42

BETA MATCHING!

Beta matching requires too high solenoid field for round beam: $B_s = \frac{\pi p_0}{eL\sqrt{r}}$ (easily > 100 T) or (very) long undulator

UNDULATOR SCHEME

- Longitudinal solenoid field (can be few Tesla)
 - Reverse field in magnet blocks if permanent magnet !
 - Max field in conductors if conventional SCU
 - Magnetic forces
- Use solenoid field as source for undulator field
 - Concept of staggered undulator (1990-1992)

- Use some small fraction of longitudinal field for building undulator field
- A. H. Ho, et al., Nucl. Instrum. Methods A296, 631 (1990)

STAGGERED UNDULATOR

The European Synchrotron | ESRF

DIFFERENT STAGGERED UNDULATOR VARIANTS

- S. Sasaki (2005)
- Add PM blocks with magnetization anti-parallel to the solenoid field
- $\sim 25 \%$ field increace

BULK HTS STAGGERED UNDULATOR

Toshiteru Kii, Ryota Kinjo, Mahmoud A. Bakr, Taro Sonobe, Keisuke Higashimura et al. : Synchr. Rad. Instr. (2010)

Ryota Kinjo et al. Phys. Rev. Spe. Top. A. B. (2014)

Period 10 mm Gap 4 mm T=20 K

Brilliance of photon beam from undulator in emittance adapter

- Limited due to large beta of round electron beam
- Better beta matching requires a priori very high solenoid field or very long undulator

Undulator technology

- staggered undulator concept seems interesting with emittance adapter
 - undulator field generated by solenoid field
- Other type of undulators (conventional PMU, SCUs) probably need more studies

