Benefit of small, round(ish) and coherent beam for scanning hard X-ray imaging

A. Somogyi, K. Medjoubi, G. Baranton Nanoscopium, Synchrotron Soleil

- Why we need a small, round beam for scanning imaging?
 - Optical layout of Nanoscopium
 - Scanning multitechnique hard X-ray imaging at
 Nanoscopium today
 - What would we gain with a small, round & coherent beam at Nanoscopium? (simple estimation)
 - Conclusion

Why we need a small, round beam for scanning imaging?

Scanning X-ray imaging

Today: « slow »

Focused X-ray beam: intensity, size, focal depth, coherence properties influence the obtained image quality

X-ray optics used at Nanoscopium

Fresnel Zone Plate lenses

Kirckpatrick-Beaz mirrors

D: useful optical aperture

Chromatic Circular: simmetric focusing Elliptical mirror shape with 0.2 nm figure error over 10 mm <nm roughness achromatic Slightly assymetric focusing

Typical D at Nanoscopium: ~50-500 μm

Why would we like to have « round beam » in imaging? The beam-size and shape determine the spatial resolution and eventual distortion of the measured image

Let's suppose that the object to measure has a dimensions of ~600 x 1000 (in arbitrary units)

If the dimensions of the probe is: 300 x 300 (arb. units)

« Measured » image

Let's suppose a probing beam having a similar H X V dimension ratio of the recent Soleil source

« Measured » image

Flat, elliptical beam: USEFUL for 1D TEXTURES e.g. surface, layers BUT provides a DISTORTED image of 2D strustures Let's suppose the same probe flux in the same total probe area, but let's choose different beam dimension ratios

Probe dimensions:

~10 x 10 • round beam

~1 x 100

« Measured » image

Optical layout of Nanoscopium

Diffraction limited spot-size

Example: Kirckpatrick Baez mirror of Nanoscopium e.g. source-KB distance: p₂~70 m

Smallest beam-size foreseen at Nanoscopium today: 50 nm

Optical layout of Nanoscopium: two stage focusing scheme in both directions

<u>Coherent illumination is required</u> to achieve optic-limited resolution (σ_{DL} diffraction limit) <u>Only the coherent fraction of the X-ray beam</u> is useful for diffraction limited focusing,

<1% of the beam intensity in the hard X-ray range

Typical flux at the spectro-microscopy (KB mirror) station at E=16 keV: ~300 x 300 nm² 1.6*10¹⁰ photons/s (non-coherent beam) ~70 x 100 nm² ~ 10⁹ photons/s

Nanoscopium after upgarde with a round small beam (simple estimation)

Supposed emittance: 45 pm rad

	actuel	nouveau
sigmax [µm]	265	5
sigmax p [µrad]	25	9
sigmaz [µm]	9,5	5
sigmaz p [µrad]	4,1	9

Supposed for the estimation: recent optical layout, « perfect » BL optics, no overhead in case of motor motion

Optical scheme of Nanoscopium: two stage focusing scheme in both directions

Beam at secondary source position (not to scale)

Expect nearly direct translation of increased brightness (~60 x) into the focused flux into smaller beam-size.

Expected flux at the spectro-microscopy (KB mirror) station at E=16 keV: in 120 x 120 nm²~10¹² photons/s

With the recent optical scheme

Scanning multitechnique hard X-ray imaging at Nanoscopium

Experimental techniques:

Simultaneous measurement of X-ray Fluorescence (XRF)/Differential Phase (DPC), Scattering and Absorption contrasts coherent scatter imaging (ptychography)

Parallel and fast acquisition

"FLYSCAN": fast detection scheme, down to 1-2 ms dwell time/pixel

Nanoscopium: scanning hard X-ray nano-probe

Energy range: 5-20 keV XRF: K-edge: Al-Mo, L-edge: Mo-U

		Major and trace nor consistivity quantification																
	1	, I	via	JOF a	allu		ice,	hhi	III S	ens	11171	ity,	yua		lica	uoi	l	18
1	' T T				Cin	ماليه	ton		als, f	for '	11	أم		nta				2 TT-
	п	Simulatenously for > to elements															пе	
	1.0079	a				F		- 17					<	IA .	2	R	0	4.0026
2				K-ed	ge	•							- n	~				
	11	Бе											В	۲ <u>۲</u>		v	F	ING
	6.941	9.0122		L-edg	je								10.811	12.011	14.007	15.999	18.998	20.1B
3		12											15	1	15	19		1.6
	Na	Mg											Al	Si	Р	S	Cl	Ar
	22.99	24.305	з	4	s	6	7	8	9	10	11	12	26.982	28,086	30.974	32,066	35 A 53	39,948
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	к	Ca	Sc	Ti	\mathbf{v}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39,098	40.078	aa.956	47.8B	\$0.942	\$1,996	54.93B	SS.BA7	\$8,933	\$8,693	63.546	65.39	69.723	72.61	74,922	78.96	79,904	B3.8
-	37	3 B	39	4Q	a	a2	a]	aa	as	a.6	a7	4 B	49	50	ST.	52	\$3	Sa
2	Rb	Sr	Y	Zr	IND	Мо	Тс	Ru	Rh	Pd	Ag	Ca	In	Sn	Sb	Те	I	Xe
	BSA6B	87.62	88.906	91.224	92.906	95.94	(97.91)	101.07	102.91	106A2	107.87	112AL	114.82	118.71	121.76	127.6	126.9	131.29
	55	56	57	72	73	7a	7 <u>5</u>	76	77	78	79	BO	BI	82	83	Ba	B≶	86
°	Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	п	РЪ	Bi	Po	At	Rn
	132.91	137.33	138.91	178A9	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
-	87	88	89	104	105	106	107	108	109	110	111							
ſ	Fr	Ra	Ac	Rf	Ha	Sg	Ns	Hs	Mt	Unn	Unu							
	(223)	(226)	(227)	(261.1)	(262.1)	(263.1)	(262.1)	(265.1)	(266.1)	(268)	(269)							

	SB	59	60	61	62	63	<u>6a</u>	65	66	67	6B	69	70	21
Lonthon ide Seriez	Се	Pr	Nd	Pm	Sm	Eu	Gđ	ть	Dy	Ho	Er	Tm	УЪ	Lu
	140.12	140.91	144,24	((00.9)	150.36	151.97	157.25	158.93	162.5	164.93	167.26	168.93	173.04	174.97
	90	91	92	93	9a	95	96	97	98	99	100	101	102	103
Actinide Series	Th	Ра	U	Np	Рц	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.04	231.04	238.03	(237)	(244.1)	(243.1)	(247.1)	(247.1)	(251.1)	(252.1)	(257.1)	(258.1)	(259.1)	(262.1)

Main scientific user communities of the beamline

- Earth sciences, paleo-geobiology
 - Biology, medical sciences

Complex heterogeneous systems Buried structures

Hard X-rays: sample thickness >10-100 µm

An important challenge is to study the <u>relationship between</u> <u>morphology and chemical composition</u>

Now, dwell time: 2.4 s/pixel, total measurement time: 7 hours sensitivity for trace trace metals: in the atto-gramm range

Data analyzis and interpretation is in progress

Hierarchical length-scale imaging

Intense Round beam, moderate resolution

High resolution region: 60 x 100

~1 x 1

Small Round beam with reduced intensity

We can improve the probe dimension (by pinhole) in trade of with <u>« flux »,</u> longer measurement time/pixel, in a smaller region

Total object : 600 x 1000

Measured image

Highly coherent beam today: we spatially filter a partially coherent beam

Ptychograpghy: scanning coherent diffraction imaging

Reconstructed phase Test sample: Siemens star ~500 nm beam size at sample position 50 nm motor steps, 1 s/image, spiral scan with 4000 sampling points **Total measurent time: 1.2 hours** Reconstructed image size: 3.5 x 2.8 µm² **Reconstructed pixel size: 14 nm Resolution:** ~35 nm

After upgrade: 16 ms per pixel **Total: 1.2 minutes 3D** ptychraphy becomes available for users

increased data rate and spatial resolution

DLSR: high degree of transverse coherence

Scanning hard X-ray multitechnique tomography

Sample thickness: 100 µm

As Zn Fe

700 µm

Multitechnique projection today: 10 ms/pixel

Multitechnique projection image: 0.17 ms/pixel after upgrade

Scanning hard X-ray multitechnique tomography

Dark-field: strongly scattering material

Draft 3D reconstruction of the whole sample (10 projection angles)

<u>After upgrade</u>: 10 slices of 2 μm resolution of a similar (hundreds μm's size) sample: in 4 minutes

the whole 3D image can be obtained with µm resolution in some hours

Today, total: in 4 hours 10 slices Moderate ($2x2x2 \ \mu m^3$) resolution due to the large sample size

Conclusion

With a new 60-100 x brighter round probe: we could measure the whole object with high resolution within the same time

Total object : 600 x 1000

High resolution area: 60 x 100

~1 x 1

Measured image

Hierarchical length-scale imaging

With a new 60-100 x brighter round probe:

With chemical (XANES) contrast 3D tomography

Beautiful technical challenges (detectors, sample positioning, stability, optical quality, data treatment, automatic sample preparation and handling, radiation damage)

Thank you for your attention !

Scanning tomography on time scales of minutes

Speed.... Field of view, statistics

Large 2D samples at simultaneous high resolution

Visualizing nanoscale structure across macroscopic fields of view

to increase spatial, temporal, compositional and chemical resolution/contrast

Merci pour le support, aide et contribution des colleques de Soleil