

Preliminary Design Considerations for a Faraday Cup for a 5 MeV RF Photo Gun

Gero Kube⁽¹⁾ and Sergey Strokov⁽²⁾ (1) DESY (Hamburg) (2) Tomsk Polytechnic University (Russia)

- Introduction: SINBAD / ARES @ DESY
- Faraday Cup Design: general Considerations
- Geant4 Simulation Results

Accelerator R&D Facility "SINBAD"

- <u>Short Innovative Bunches and Accelerators at DESY</u>
 - currently under construction
 - \rightarrow re-use of former DORIS tunnel
 - multiple experiments on acceleration of ultra-short electron bunches and advanced acceleration schemes
 - will initially host 2 experiments:

• AXSIS

- <u>A</u>ttosecond <u>X</u>-ray <u>S</u>cience: <u>I</u>maging and <u>S</u>pectroscopy
 - \rightarrow ERC-synergy grant funded project
- > THz acceleration in dielectric loaded waveguides
 - \rightarrow develop compact ~ 15 MeV accelerator
- X-ray generation via Inverse Compton Scattering (ICS)

• ARES

- <u>A</u>ccelerator <u>R</u>esearch <u>Experiment at Sinbad</u>
 - \rightarrow 1st step: build 100MeV electron linac for ultra-short bunches
 - \rightarrow 2nd step: optimize performance, compare various compression techniques
 - \rightarrow 3rd step: use of beam (ACHIP, THz experiments, Trans-National Access...)

🕦 SINBAD

U. Dorda et al., Proc. IPAC 2017, Copenhagen (Denmark), MOPVA012

Gero Kube, DESY / MDI

ARES Linac

• linac parameters

- normal conducting linac
 - \rightarrow E ~ 100 MeV, $\Delta E/E \sim 0.2\%$
 - \rightarrow Q_b = 0.5 30 pCb, (sub-) fsec duration
- 2 about 4.5 m long S-band structures (upgrade: 3)
- magnetic bunch compression / velocity bunching
- upgrade option for 2nd experimental site

• gun

- > modified version of REGAE gun
 - \rightarrow S-band RF photo gun (5 MeV)
- > followed by ~ 2.5 m long beam line
 - \rightarrow beam diagnostics section
- operation shall start end of 2017
- moveable Faraday Cup (FC)
 - > compact design (< 30 mm)</pre>
 - particle free vacuum condition
 - accuracy better than 1%

U. Dorda et al., Proc. IPAC 2017, Copenhagen (Denmark), MOPVA012

Faraday Cup

- FC operational principle
 - beam stopper, isolated from beam pipe ground potential
 - connected to current meter \rightarrow sensitive to low currents (pA)
- signal leakage
 - goal: minimize number of escaping electrons
 - \rightarrow (i) choice of <u>material</u> & <u>geometry</u>, (ii) external repelling mechanisms
 - consider experience of electron microscopy
 - \rightarrow use of "leakage signals" for material analysis

http://nau.edu/cefns/labs/electron-microprobe/glg-510-class-notes/signals/

- backscattered electrons (BSE)
 - \rightarrow elastic scattering
- secondary electrons (SE)
- Auger electrons (AE)
 - \rightarrow inelastic scattering
- X-rays (Bremsstrahlung)

Gero Kube, DESY / MDI

Secondary- / Auger Electrons

- secondary electrons
 - > takes place between incident electrons and outer (weak bound) electrons of the atom
 - > outer electrons can be ejected from atom with energies lower than 50 eV
 - if SEs are produced near the surface with energy higher than surface energy (~ 6eV) \rightarrow escape to vacuum

Gero Kube, DESY / MDI

DEELS 2017 Workshop @ SOLEIL, 13.06.2017

GEMEINSCHAFT

Backscattering and Bremsstrahlung

• backscattering

> parametrization for few MeV energies:

T. Tabata, R. Ito and S. Okabe, Nucl. Instruments and Methods 94 (1971) 509

Material Choice

• periodic table

suitable low-Z material

 \rightarrow reduce signal losses

• occurence of carbon

> graphite

Gero Kube, DESY / MDI

Geometry

• investigation of various geometries

 \rightarrow suppression of backscattering

suppressor

- *task:* find geometry which produces smallest quantity of backscattered particles
- Geant4 simulation
 - beam: pencil-like, 5 MeV electrons, 10⁶ particles
 - > geometry: beam hits Al-target under three different angles wrt. target surface:

Simulation Results (1)

• primary electrons, scattered from Al substrate

12.5

25

20

15

10

GEMEINSCHAF1

• primary and secondary electrons, scattered from Al substrate

Gero Kube, DESY / MDI

Simulation Results (2)

HELMHOLTZ =

• primary electrons, scattered from Al substrate

• primary and secondary electrons, scattered from Al substrate

Gero Kube, DESY / MDI

Gero Kube, DESY / MDI

Design Considerations

• recapitulation

- Material: Al
- > geometry: normal incidence
- suppressor electrode: no need

• requirement

- > compact design: stopping power
 - \rightarrow charcterization via CSDA range

(Continuous Slowing Down Approximation)

→ estar (NIST) calculation \rightarrow 5 MeV

	Z	R _{csda} /mm
С	6	17.09
Al	13	11.46
Cu	29	3.80
Ag	47	3.33
Au	79	1.90

http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html

Al not best choice...

- vacuum requirements & backscattering
- → backscattering

 \rightarrow

 \rightarrow backscatter energies to high

- material combination:
 - \rightarrow low Z: low backscattering
 - \rightarrow high Z: high stopping power

- further optimization option
 - > solid angle for particle escape

Influence of Solid Angle

- FC length variation
 - > 3 different FC lengths: 30mm, 35mm, 40mm
 - keep bottom thickness of FC constant: 7.5mm Al + 2mm Cu

Gero Kube, DESY / MDI

Simulation Results (1)

HELMHOLTZ =

• primary electrons, backscattered from FC

• primary and secondary electrons, backscattered from FC

Gero Kube, DESY / MDI

Simulation Results (2)

• primary electrons, backscattered from FC

energy / MeV

energy / MeV

GEMEINSCHAF1

Gero Kube, DESY / MDI

energy / MeV

Summary and Outlook

- design study for compact Faraday cup
 - > 5 MeV electrons
 - particle-free vacuum conditions
 - compact design
- investigation of particle leakage
 - backscattering is dominant loss process
 - \rightarrow material choice: low Z
 - \rightarrow tilt angle of stopping surface: normal incidence
 - \rightarrow depth of cup L_{FC}:

- less important
- (P. Strehl, *Beam Diagnostics and Instrumentation*, Springer (2006): for $L_{FC} > R$)
- compact FC design
 - simulated particle losses $\sim 0.45\%$
- change of specifications
 - outer dimensions to large... \rightarrow new simulations under way...
- what happens, if a monitor is not designed by a beam diagnostician...

- heat load
 - > not considered, but uncritical
 - $\rightarrow Q_b = 0.5 30 \text{ pCb}$

Simulation of present FC Design

- Cu based FC
 - > 0.5mm thick Al plate placed 1mm above surface
 - \rightarrow covered with YAG powder (screen)
 - surface tilted by 45°
 - \rightarrow observation geometry for screen

- Geant4 simulation
 - > 10⁶ primary electrons

energy distribution of electrons escaping from FC

