

Status of the newly installed BeamLoss Detectors

Laura Torino DEELS 2017, 12/06/2017

What we had

- 64 "Slow" Beam Loss Detectors
 - □ PMT + scintillator
 - $\ \square$ Read out < 1 Hz
- 64 Ionization Chambers
 - □ Extremely heavy

What we had

- 64 "Slow" Beam Loss Detectors
 - \square PMT + scintillator
 - \square Read out < 1Hz
- 64 Ionization Chambers
 - Extremely heavy

What we had

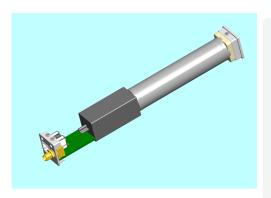
- 64 "Slow" Beam Loss Detectors
 - □ PMT + scintillator
 - □ Read out < 1Hz
- 64 Ionization Chambers
 - Extremely heavy

What we wish to have

- Something flexible
 - □ Slow Losses
 - □ Fast Losses
- Something handy
- Something "off shelf"
 - □ Systematically located

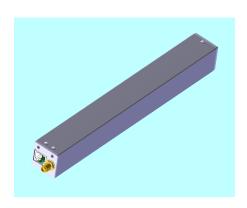
What we had

- 64 "Slow" Beam Loss Detectors
 - □ PMT + scintillator
 - □ Read out < 1Hz
- 64 Ionization Chambers
 - □ Extremely heavy


What we wish to have

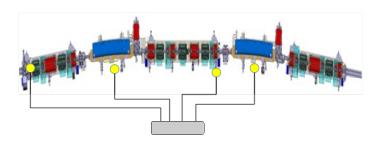
- Something flexible
 - □ Slow Losses
 - □ Fast Losses
- Something handy
- Something "off shelf"
 - □ Systematically located

What we decided to have

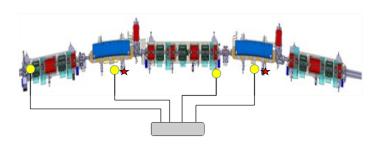

Off-shelf PMT coupled with a scintillator and Commercial electronic to control and read the results

- PMT Hamamatsu H10721-110
 - □ 8 mm active area
 - □ Powered 5 V
 - □ 0-1 V gain control
- EJ-200 scintillator rod (100x22mm)
 - Wrapped in reflective foil
- "Light" lead shielding

- PMT Hamamatsu H10721-110
 - □ 8 mm active area
 - □ Powered 5 V
 - □ 0-1 V gain control
- EJ-200 scintillator rod (100×22mm)
 - Wrapped in reflective foil
- "Light" lead shielding

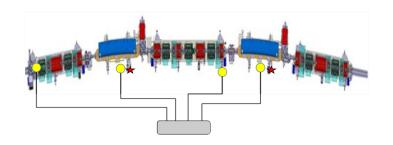


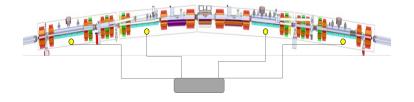
- General power supply
- Trigger input
- 4 independent gain control channels
- 4 independent impedance settings $(50 \Omega/1 M\Omega)$
- 4 independent read out channels
- 8 ns ADC sample


BLDs Location

32 ESRF cells ⇒ 32 Libera BLM units 4 BLDs per cell \Rightarrow 128 BLDs

BLDs Location




32 ESRF cells \Rightarrow 32 Libera BLM units 4 BLDs per cell \Rightarrow 128 BLDs

Direct comparison with the current BLD system

BLDs Location

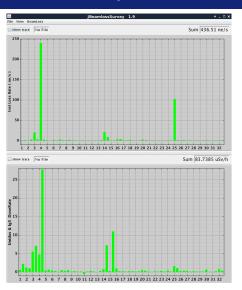
Example

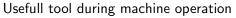
Status

- 128 BLDs relatively calibrated
- 128 BLDs installed
- Cell 4 to Cell 26 (92 BLDs) commissioned
- Cell 1 to Cell 3 and Cell 27 to Cell 32 installed (preliminary results)

Status

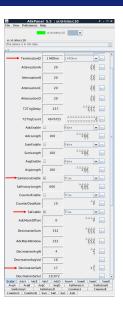
- 128 BLDs relatively calibrated
- 128 BLDs installed
- Cell 4 to Cell 26 (92 BLDs) commissioned
- Cell 1 to Cell 3 and Cell 27 to Cell 32 installed (preliminary results)


```
⇒ Slow Losses
```


⇒ Fast Losses

⇒ Turn by Turn Losses

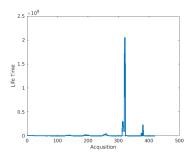
Slow Losses – Current System



Slow Losses – New System

Settings

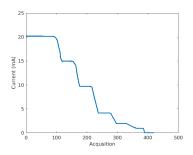
- High Impedance
- Decimation Level
- Integration Time


Synchrotron Radiation Influence – Test

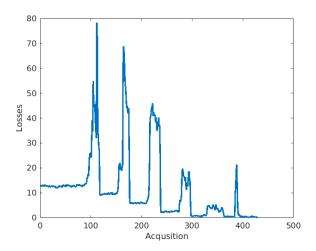
X-rays produced by synchrotron radiation interact with the BLD scintillator and produce unwanted background

Low losses condition (Low current/High Lifetime)

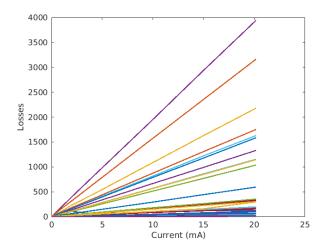
Only synchrotron radiation is detected


Synchrotron Radiation Influence – Test

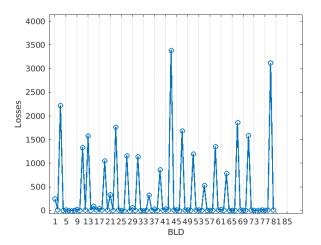
X-rays produced by synchrotron radiation interact with the BLD scintillator and produce unwanted background


Low losses condition (Low current/High Lifetime)

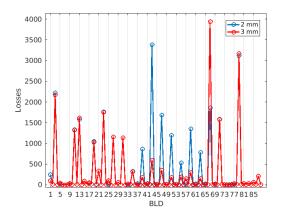
Only synchrotron radiation is detected

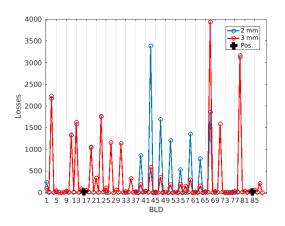


Synchrotron Radiation Influence – Evidence

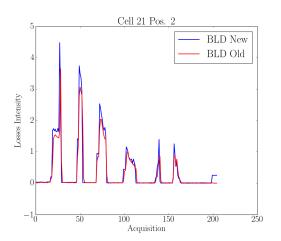

Synchrotron Radiation Influence - Evidence

The European Synchrotron


Synchrotron Radiation Influence – Evidence


Synchrotron Radiation Influence - Shielding

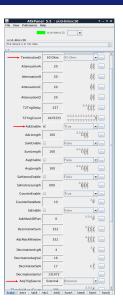
Increase the lead shielding from 2 to 3 mm (Cell 13 to Cell 19, preliminary)



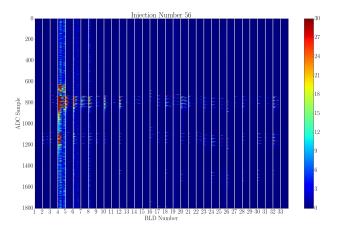
Synchrotron Radiation Influence – Position

Design a specific suport of BLDs in position 3

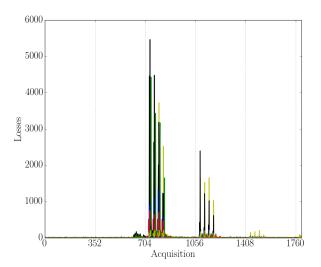
Comparison Current/New BLDs


Data acquired during top-up injection

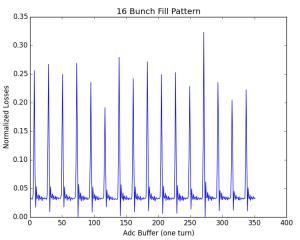
Fast Acquisition


Settings

- 50 Ω Impedance
- ADC Sample (8 ns)
- External Trigger



Fast Acquisition – Injection Monitoring

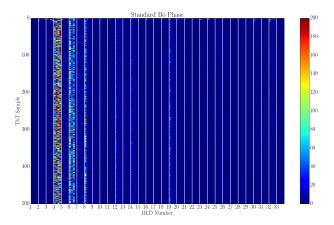


Fast Acquisition - Injection Monitoring

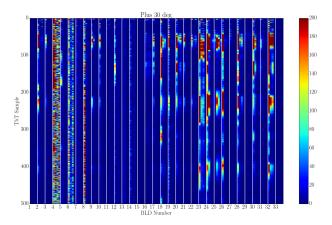
Fast Acquisition – Bunch by Bunch Losses

BLD after a vertical scraper (7.2 mm) aperture \Rightarrow Counting mode

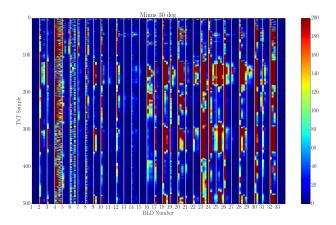
Turn by Turn Acquisition


Settings

- 50 Ω Impedance
- DecimationSum = 1 turn (352)
- External Trigger



Turn by Turn – Booster Phase Shift



Turn by Turn – Booster Phase Shift

Turn by Turn – Booster Phase Shift

Summary

- New BLM system installed at ESRF ✓
- Reliable and user-friendly software ✓
- Good option to substitute the current system √
- Additional feature (fast and turn by turn acquisition) √

Summary

- New BLM system installed at ESRF
- Reliable and user-friendly software ✓
- Good option to substitute the current system
- Additional feature (fast and turn by turn acquisition) \(\square\)
 - Still under commissioning
 - Calibration with the current system
 - Relative calibration check (possibly in situ)
 - User-Gui for not expert

Summary

- New BLM system installed at ESRF ✓
- Reliable and user-friendly software ✓
- Good option to substitute the current system √
- Additional feature (fast and turn by turn acquisition) ✓
 - Still under commissioning
 - Calibration with the current system
 - Relative calibration check (possibly in situ)
 - User-Gui for not expert

Many thanks to K. Scheidt, F. TaouTaou, N. Benoist, JL. Pons

