EuroGammaS

European Consortium for the delivery of a Gamma Beam System to ELI-NP

European Consortium for the delivery of a Gamma Beam System to ELI-NP

DEELS Workshop 2017 Status of the R&D on Cavity BPM and its readout electronics

Giovanni Franzini

Contributions:

1

B. Baricevic, M. Cargnelutti, A. Mostacci, D. Pellegrini, M. Serio, A. Stella

ELI-NP Gamma Beam System

2

Magurele - Romania

ELI-NP GBS is an Advanced Gamma Source for studies in new nuclear spectroscopy and new photonuclear physics.

It is a Compton back-scattering machine with a tunable energy of the gamma photons between 0.2 and 19.5 MeV, a narrow bandwidth (0.5%) and a high spectral density (>10⁴ photons/sec/eV).

The EuroGammas consortium, led by INFN, is responsible for its develop and delivery. The machine installation is scheduled by the end of 2017.

Gamma Beam Specifications

Gamma Beam Specifications			
0.2 – 19.5			
$0.8 - 4.10^4$			
≤ 0.5			
$10^{20} - 10^{23}$			
100			
32			
16.1			

By using an optical re-circulator, a single laser pulse will collide with a multi-bunch (32) electron beam at the interaction point, generating the gamma beam by Compton back-scattering.

giovanni.franzini@Inf.infn.it

3

Beam parameters and structure

Electron Beam Specifications			
Max. Energy at IP [MeV]	280 - 720		
Macro Pulse rep. Rate [Hz]	100		
Number of bunches	up to 32		
Bunch spacing [ns]	16.1		
Bunch length [ps]	0.91		
Bunch charge [pC]	25-250		
Bunch Energy Spread	< 0.1%		

ELI-NP GBS Diagnostics

Non-intercepting diagnostics:

Charge measurements:

 4 Integrating Current Transformers (bunch by bunch)

Position measurements:

- 29 stripline BPMs (Macro pulse)
- 4 cavity BPMs (bunch by bunch)
- Beam Loss Monitor System

Intercepting diagnostics:

Position and spot size measurements:

• 23 Beam Screens (YAG and OTR)

Cavity Beam Position Monitor

PSI Cavity BPM16

Cavity BPM RF input signal

Position Cavity Resonator

Inner Aperture [mm]	16
QL	40
TM110 Frequency [GHz]	3,284
TM010 Frequency [GHz]	2,252
Position Signal [V/mm/nC]	7,07
Angle Signal [µm/mrad]	4,3

Reference Cavity Resonator		
QL	40	
TM010 Frequency [GHz]	3,284	
Charge Signal [V/mm/nC]	135	

Readout Electronics

Readout Electronics

Libera CavityBPM

ADC	4 channels, 500MS/s, 14bit
ADC buffer	4kS/channel (~8us)
Variable attenuation	31dB, channel-independent
Input signal frequency	C-band, S-band
Ref. signal frequency	62.08 MHz
Cooling	Passive

Signal Processing

Signal Processing

Signal Processing

Test Setup

Test Setup

mittelifi

Test Setup

Gate duration defines the number of bunches per train.

32 bunches (515 ns)

Two bunches (32 ns)

First Measurements

Attenuator non-idealities

Different phase-shift

Attenuation deviations

Attenuator non-idealities can be calibrated

Compensated phase-shift

Compensated attenuation deviation

Linearity measurements

Single bunch position resolution

ADC Data

Beam position measurements X , Y < 3µm

Resolution vs Signal Level

ADC buffer peak level

X&Y Position RMS resolution

Multiple bunches

miniditi

Multiple bunches measurements

The first multiple bunches measurements shows a high variation (bunch to bunch). This has to be further investigated.

Future measurements and conclusions

- We are performing tests on cavity BPMs and its readout electronics in order to calibrate the measurement system and perform a fast commissioning.
- Single bunch measurements show a resolution of $3\mu s$ over 1000 μm , but...
 - we are dominated by signal generator noise (trying to improve it)

We are continuing our tests in order to measure:

- Resolution with multiple bunches
- Jitter-related loss of resolution
- Phase-recognition
- Drifts over time

Thank you for your attention!

Stripline Beam Position Monitor

Libera Single Pass-E (readout electronics)

Keypoints:

- Resolution: 10 μm
- Only Macro pulses average position
- Will be used also for charge measurements

GBS - Beam Specifications

anni i titi i ta

Energy [MeV]	0.2 – 19.5
Spectral Density [ph/s·eV]	0.8 – 4·10 ⁴
Bandwidth rms [%]	≤ 0.5
# photons/pulse within FWHM bdw.	≤ 2.6·10 ⁵
# photons/s within FWHM bdw.	≤ 8.3·10 ⁸
Source rms size [µm]	10 – 30
Source rms divergence [µrad]	25 – 200
Peak brilliance [N _{ph} /s·mm ² ·mrad ² ·0.1%]	10 ²⁰ – 10 ²³
Radiation pulse length rms [ps]	0.7 – 1.5
Linear polarization [%]	> 99
Macro repetition rate [Hz]	100
# pulses per macropulse	32
Pulse-to-pulse separation [ns]	16
Polarization axis wiggling [deg]	< 1
Synchronization to an external clock [ps]	≤ 0.5
Source position transverse jitter [µm]	< 5
Energy jitter pulse-to-pulse [%]	< 0.2
# photons jitter pulse-to-pulse [%]	≤ 3

hi.franzini@Inf.infn.it

Table 3. Yb:Yag Collision Laser beam parameters			
	Low Energy Interaction	High Energy Interaction	
Pulse energy (J)	0.2	2x0.2	
Wavelength (eV,nm)	2.3,515	2.3,515	
FWHM pulse length (ps)	3.5	3.5	
Repetition Rate (Hz)	100	100	
M ²	≤ 1.2	≤ 1.2	
Focal spot size w₀ (µm)	> 28	> 28	
Bandwidth (rms)	0.1 %	0.1 %	
Pointing Stability (µrad)	1	1	
Sinchronization to an ext. clock	< 1 psec	< 1 psec	
Pulse energy stability	1 %	1 %	

millit

spares

Table 1. Election stam parameters at interaction romas. general characteristics		
all values are rms		
Energy (MeV)	80-720	
Bunch charge (pC)	25-400	
Bunch length (µm)	100-400	
ε _{n_x,y} (mm-mrad)	0.2-0.6	
Bunch Energy spread (%)	0.04-0.1	
Focal spot size (µm)	> 15	
# bunches in the train	≤ 32	
Bunch separation (nsec)	16	
energy variation along the train	0.1 %	
Energy jitter shot-to-shot	0.1 %	
Emittance dilution due to beam breakup	< 10%	
Time arrival jitter (psec)	< 0.5	
Pointing jitter (µm)	1	

Table 2. Electron beam parameters at Interaction Points: general characteristics

ministe

spares

in the fille

$$f_{res} = 3.284 GHz$$

 $Q = 40$
 $T_{decay} \cong Q/f_{res} = 12.1 ns$

giovanni.franzini@Inf.infn.it

29

Single bunch position resolution

Resolution vs Signal Level

ADC buffer peak level

X&Y Position RMS resolution

	Carl 19 Carl Carl	1000 p	O CAR	m	47-5/ 5
and the second second second	A Martin Commentation	Ammunic Millillilli		North -	0
				- Herein	HA Y 1

Parameter	Value
Maximum Energy	720 MeV
Macro Pulse rep. rate	100 Hz
Number of bunches per	up to 32
Macro Pulse	
Bunch Spacing	16.1 ns
Bunch Length (σ_t)	0.91 ps
Bunch Charge	25 pC – 250 pC