# **Diagnostics for ThomX**

Diagnostics Experts of European Light Sources Workshop SOLEIL Synchrotron 12-13/06/2017

N. HUBERT, M. LABAT, M. EL-AJJOURI, D. PEDEAU, Synchrotron SOLEIL I. CHAIKOVSKA, N. DELERUE, N. EL-KAMCHI LAL



Programme Investissements d'avenir de l'Etat ANR-10-EQPX-51. Financé également par la Région IIe-de-France. Program « Investing in the future » ANR-10-EQOX-51. Work also supported by grants from Région IIe-de-France.

# The ThomX Project



10<sup>21</sup>
SGE FACILITY
SUEER 2.75 GeV

10<sup>22</sup>
SUEER 2.75 GeV
SUEER ACO.08 GeV

10<sup>22</sup>
SUEER 2.75 GeV
SUEER ACO.08 GeV

10<sup>20</sup>
SUEER 2.75 GeV
SUEER ACO.08 GeV

10<sup>20</sup>
SUEER 2.75 GeV
SUEER ACO.08 GeV

10<sup>20</sup>
SUEER ACO.08 GeV
Finitance 3.7 nn.rd

10<sup>20</sup>
HU44
U129
Bending Magnet

10<sup>10</sup>
Bending Magnet
SUEER Magnet
SUEER Magnet

10<sup>10</sup>
Bending Magnet
SUEER Magnet
Thom X

10<sup>10</sup>
Gev
Thom X
SUEER Magnet

10<sup>10</sup>
GeV
Thom X

What is ThomX?

- Light source based on Compton Back Scattering effect (CBS)
  - Efficient energy amplifier
  - Production of hard X-rays with relatively low energy machine
  - Example : 50 MeV electrons and 1.23 eV laser give up to 50 keV back scattered X-rays
- High average flux
  - Storage ring to have a high repetition rate
  - high average power laser amplified in a Fabry Perot resonator
- •Target : Store one electron bunch of 1 nC over 20 ms in the ring Store one laser pulse of 25 mJ in the FP cavity => 10<sup>13</sup> Ph/s
  - ==> Thom-X is a demonstrator



## The ThomX Project

- What is ThomX?
  - Collaboration!



- Leading institute is the LAL (project leader Hugues Monard)
- Supported by
  - the EQUIPEX program French Research Ministry,
  - Ile-de-France region,
  - CNRS-IN2P3
  - Université Paris Sud XI
- SOLEIL has in charge the design of the accelerator and will be part of the installation tests and commissioning

## **ThomX Layout**



## ThomX: what for?

- Transfer of the SR techniques to these new machines. Many fields can be interested...
- At present two contributors: Cultural Heritage (C2RMF CNRS Louvre Museum) Medical field (ESRF, INSERM Grenoble)

#### •Painting analysis





 Paleontology Non-destructive analysis



•*K*-edge imaging (Pb $\rightarrow$ white, Hg $\rightarrow$  vermilion...) of a Van-Gogh's painting •J. Dik et al., Analytical Chemistry, 2008, 80, 6436

 Physiopathology and Contrast agents, •Dynamic Contrast Enhancement SRCT •Convection Enhanced Delivery =>Stereotactic Synchrotron RT

|      | F           | V  | MTT | PS      | Dt   | FMI  |     |
|------|-------------|----|-----|---------|------|------|-----|
| Xb21 | <b>(</b> )) |    |     |         | also | 1.00 | Ð   |
| Xv91 |             |    | ۲   | <u></u> | 1    | 1200 | 05  |
| Xv94 |             |    |     | 2       | 14   |      | 1   |
| Xw2  |             |    | ٢   | , Č     |      |      | 610 |
| 0MV  | <u>.</u>    | 03 | 1   | 1       |      | ( to | 6Å  |



•J Cereb Blood Flow and Metab, 2007. 27 (2):292-303.

RX source geometry 10 mrad 10 cm 10 m •Biston et al, Cancer Res 2004 64, 2317-23 ·Mammography Microtomography





•Journal of Radiology 53, 226-237 (2005)

• Thanks to G.Le Duc, P.Walter

**Diagnostics for Thom-X** 

DEELS 2017, 12/13-06-2017, N. Hubert

·Imaging,

## **Expected beams characteristics**

| Injector                      |                          |                   |
|-------------------------------|--------------------------|-------------------|
| Charge                        |                          | 1 nC in 1 bunch   |
| Laser wavelength and pulse po | wer                      | 266 nm, 100 μJ    |
| Gun Q and Rs                  |                          | 14400, 49 MW/m    |
| Gun accelerating gradient     |                          | 100 MV/m @ 9.4 MW |
| Normalized r.m.s emittance    |                          | 8 $\pi$ mm mrad   |
| Energy spread                 |                          | 0.36%             |
| Bunch length                  |                          | 3.7 ps            |
| Laser and FP cavity           |                          |                   |
| Laser wavelength              |                          | 1030 nm           |
| Laser and FP cavity Frep      |                          | 36 MHz            |
| Laser Power                   |                          | 50 - 100 W        |
| FP cavity finesse / gain      |                          | 30000 / 10000     |
| FP waist                      |                          | 70 µm             |
| Source                        |                          |                   |
| Photon energy cut off         | 46 keV (@50 MeV), 90 k   | «eV (@ 70 MeV)    |
| Total Flux                    | 1011-1013 ph/sec         |                   |
| Bandwidth                     | 1 % - 10%                |                   |
| Divergence                    | 1/v ~ 10 mrad without di | aphraam @ 50 MeV  |

| Ring                                    |                          |
|-----------------------------------------|--------------------------|
| Energy                                  | 50 MeV (70 MeV possible) |
| Circumference                           | 18 m                     |
| Crossing-Angle (full)                   | 2 degrees                |
| В <sub>х,у</sub> @ IP                   | 0.2 m                    |
| Emittance x,y (without IBS and Compton) | 3 10 <sup>-8</sup> m     |
| Bunch length (@ 20 ms)                  | 30 p <i>s</i>            |
| Beam current                            | 17.84 mA                 |
| RF frequency                            | 500 MHz                  |
| Transverse / longitudinal damping time  | 1 s /0.5 s               |
| RF Voltage                              | 300 kV                   |
| Revolution frequency                    | 16,7 MHz                 |
| Harmonic Number                         | 30                       |
| $\sigma_x$ @ IP (injection)             | 78 mm                    |
| Tune x / y                              | 3.4 / 1.74               |
| Momentum compaction factor $\alpha_{c}$ | 0.013                    |
| Final Energy spread                     | 0.6 %                    |
| 12/13-06-2017, N. Hubert 6              |                          |

## **Diagnostics for ThomX**

Charge

- Position
- Diagnostic stations
- Length
- Stripline for transverse feedback

Losses

DEELS 2017, 12/13-06-2017, N. Hubert

7

## Charge measurement (Typ. 1 nC @ 50 Hz)

- 3 integrated current transformer (ICT)
  - Location:
    - @ LINAC entrance
    - @ Linac exit (before first TL bending magnet)
    - @ Transfer Line (after the 2 bending magnets)
  - > Type:

- Bergoz in-flange ICT & Electronics
- In-flange integrating current transformer from Bergoz
- Dedicated electronics BCM-IHR provides analog voltage proportional to the beam charge
- Acquisition to be integrated in the control system (Red Pitaya, 14 bits).
- Expected resolution <1 pC</p>



14 bits Red Pitaya acquisition board

117

100-100

DEELS 2017, 12/13-06-2017, N. Hubert



## Charge measurement (Typ. 1 nC @ 50 Hz)

- 2 Faraday cups (FC)
  - Location: in the beam dumps
    - @ the end of Linac (behind first TL bending magnet)
    - In the end of extraction line
  - Acquisition:
    - Few tens of ns pulse to be acquired synchronously to injection or extraction trigger
    - Use of Low Pass filtering and acquisition with the Wavecatcher board (BW 500 MHz; 3.2 GS/s, 12 bits)
    - Tango device ready



Beam dump



9



Diagnostics for Thom-X

DEELS 2017, 12/13-06-2017, N. Hubert

## Position measurement (BPM) Mechanics

- 6 Striplines
  - > 1 stripline on the LINAC
  - > 4 striplines on the transfer line
  - > 1 stripline on the extraction line
  - >  $\lambda/4 @ 500 \text{ MHz} \rightarrow \text{Electrode length} = 150 \text{ mm}$
  - Resolution requirements: < 100 µm for 1 nC</p>
  - 4 electrodes @ 45° covering ~2/3 of circumference
  - Linac stripline has different design due to larger vacuum chamber diameter
  - Mechanics and soldering (feedthroughs) are done at LAL
  - Electrical tests and calibration done at SOLEIL

Diagnostics for Thom-X













Calibration based on "Lambertson" method using a logic network analyzer

## Position measurement (BPM) Mechanics

- 12 button BPMs for the storage ring
  - Resolution ~1 µm @ 10 Hz
  - Prototype done at LAL
  - Mechanics and soldering are done by RIAL Vacuum, to be delivered this summer
  - > Additional electrodes on double BPM for:
    - Transverse and longitudinal bunch by bunch feedbacks
    - Polarization for ion cleaning





4, 6 and 8 buttons BPMS



ESRF (old) type 10 mm button



BPM prototype



## Position measurement (BPM) Electronics

- Libera Brilliance+ (Instrumentation Technologies)
  - > 4 BPM boards per crate
  - Data Flow:
    - Single Pass for Linac and Transfer Line
    - @ 8,33 MHz (half rev. freq.) ~turn by turn data for storage ring
    - @10 Hz slow acquisition data for storage ring
  - > Automatic gain control
  - Post-mortem and interlock possibilities
  - Tango device available and fully configurable embedded on the ARM processor



Acceptance tests: Turn by Turn (8.33 MHz) and Slow Acquisition data (10 Hz)



117



Test bench for acceptance test



10 MHz svnc ilent 33250A 10 MHz sync gilent 33250A **Pulse generator Pulse generator** Pulse generator 8,33 MHz Agilent 33250A 1 Hz 16.66 MH MC input T2 input 1 dB att. 0\_4600 M 7PH18GN-01 3 dB att. Libera Variable Short Pulse Splitter 6 dB att. Brilliance + attenuator generator 3 dB att. Test bench for acceptance test For Slow Acquisition (SA) data 100 samples are acquired at each power level to calculate rms and average values Switching=1 (enable) DSCCoeffAdjust=1 (calculation of adjusted coefficient is activated) For both: OffsetTune=1 CompensateOffset=1 (enabled) Automatic Gain Control: ON Digital Signal Conditioning: DSCFrequency=10 (1seconde) DSCType=1 (last calculated adjusted coefficients are used)) DSCCoeffAttDependent=0 (disabled) DSCToleranceThr=8 (%) For Turn by Turn data: DDC data flow is used Switching=0 (disabled) DSCCoeffAdjust=0 (calculation of adjusted coefficient is disabled) Buffer length= 10 000 samples 

Acceptance tests: Single Pass Data





Test bench for acceptance test



Acceptance tests: Single Pass Data



Libera configuration for Single Pass: OffsetTune=0 Switching=0 (disabled) CompensateOffset=0 (disabled) Automatic Gain Control: ON Digital Signal Conditioning: DSCType=0 (unity coefficients are used)

SpNBefore=1 SpNAfter= 40 SpThreshold= 256





#### Diagnostics for Thom-X

## Position measurement (BPM) Electronics

- Reliability issues during Libera Brilliance+ acceptance tests
  - First unit delivered in January 2015
    - Acceptance test validated in march 2015
      - > Performances (beam current dependence, resolution...) are ok
      - > Reliability issues pointed out (boot, data availability, Tango device server)
  - 5 other modules delivered in september 2015
    - Acceptance test not yet validated
      - > Performances (beam current dependence, resolution...) are ok.
      - > Still reliability issues
        - Software upgrade: november 2015
        - 1 module back to I-Tech during 6 month
        - Software upgrade: november 2016
        - Hardware patch: november 2016
        - FPGA upgrade: January 2017
          - Added reset on NCO to solve spikes issue
        - OS upgrade: March 2017
          - From Ubuntu 10.04 to 14.04
          - For software and Tango device compatibility







Spikes issues with boot dependance

## **Diagnostic stations**

- Location
  - > 5 Stations on Linac and transfer lines
- Purpose:
  - > Beam size, emittance and energy measurement
- Principle:
  - Screen translation stage
    - Calibration plate
    - ▶ YAG (Ce): 25 mm diameter, 100 µm thick
    - OTR : 25 mm diameter, 100 µm aluminised silicon wafer
    - Sapphire screen (station 2 @ end of Linac)
  - > View port: Fused Silica DN 60 CF
  - Imaging system
  - Gigabit Ethernet trigged CCD
    - ✓ Design
    - Screens are delivered
    - 1 translation stage is ready, the others to be ordered



117

Screen translation stage

## **Diagnostic stations**

Transverse size measurement (1 to 2.5 mm)

- Emittance measurement
  - Using Quadrupole scan method
    - Measure beam size vs Qpole strength
    - Required resolution: 10 pixels/sigma
    - Devices: 1 quadrupole + screen + CCD
    - Location:
      - Ø Diag stations 2 and 3







#### Energy measurement:

> Passing through dipole magnet  $\rightarrow$  dispersion

►  $\langle x \rangle \rightarrow E = energy$ 

- ►  $dx \rightarrow dE = energy spread$
- Device:
  - Dipole + screen + CCD
- Location:
  - @ middle of transfer line (Diag Station 3)
  - @ dump 2 (Diag station 5)





117

## Bunch length measurement

- End of Linac (4.3 ps expected):
  - Cherenkov radiation produced when the electron beam passes through the sapphire screen
  - Sapphire window to extract light
  - Transport the radiation to a streak camera to measure the photon pulse length.

#### Storage Ring (5 to 20 ps expected):

- Synchrotron radiation produced when the electron beam changes its trajectory in the bending magnet
- Sapphire window to extract light
- Transport the radiation to a streak camera to measure the photon pulse length.



#### Cerenkov radiation in sapphire screen



#### SR extraction port



Cerenkov radiation longitudinal measurement on PHIL with ThomX streak camera (photon counting mode)

#### **Diagnostics for Thom-X**

DEELS 2017, 12/13-06-2017, N. Hubert

## Bunch length measurement

- Complex transport path to the streak camera
  - > Streak camera installed inside laser hutch
  - > Mirror support at 2.3 meter high







## Synchrotron Light Monitor

Visualization of the beam in the storage ring in transverse plane



SR Eiffel Tower



Diagnostics for Thom-X

## Transverse feedback

- Design of a stripline
  - > See Moussa presentation tomorrow



Transverse feedback stripline



17





## **Beam Loss Monitors**

- Fiber Beam Loss Monitor (FBLM)
  - Principle:
    - Particle loss → passes through the fiber → generates Cherenkov light pulse in the fiber.
    - Pulse propagates to photomultiplier
    - Time at witch the loss pulse arrives with respect to the trigger (reference) gives the location of the loss
  - I fiber for the LINAC, 1 for the TL, 4 for the SR and 1 for the EL.
  - The choice of the fibers and PMTs are made, the order to be passed at beginning of 2017. The controller for the DAC to control remotely the PMT gain: the order to be passed at the beginning of 2017.
  - DAQ: Wavecatcher + Scope for the SR
  - Beam test @ PHIL: Wavecatcher and its Tango DS have been successfully tested with the FBLM.



## **Beam Loss Monitors**

- Scintillators coupled to the PMT to monitor the local losses (e.g. @injection)
  - Scintillator: Thalium activated Cesium Iodide CsI(Tl)
  - More sensitive than fibers
  - Positioned at specific locations and to be used during the commissioning and operation.
  - Scintillator is available, PMT and controller for the DAC will be ordered at the same time as for the FBLM.
  - DAQ: RedPitaya card (Tango DS is ready) is under the test => inside crate Diag 5 and 6.
  - The assembly has been tested using the scope with the radioactive sources and with the beam @ PHIL.





CsI(Tl) + PMT



**Red Pitaya** 

## Conclusion

- A small machine but many different diagnostics
  - > Time spent on:
    - Optical transport for bunch length measurement
    - Transverse feedback stripline design
    - Libera acceptance tests (not expected!)
- ThomX schedule:

| ANNING THOMX          | 2016   |       |         |        |      |       |     |     |       | 20    | 17       | 7     |       |       |       |          |      |     |    |       | 201        | 18      |       |        |      |       |     |       |      |            |       | 20     | 19   |        |     |    |   |   |   |   |     |
|-----------------------|--------|-------|---------|--------|------|-------|-----|-----|-------|-------|----------|-------|-------|-------|-------|----------|------|-----|----|-------|------------|---------|-------|--------|------|-------|-----|-------|------|------------|-------|--------|------|--------|-----|----|---|---|---|---|-----|
| 02/03/2017            | J F    | MA    | A M     | J      | J    | A S   | 5 ( | N C | D     | J     | FI       | 1     | A N   | L N   | J     | Α        | s    | 0   | Ν  | D     | 1          | F N     | VI A  | A N    | ΙN   | J     | 1   | ۱S    | 0    | N          | D     | 1      | F    | MA     | N N | ΙN | 1 | Α | s | 0 | N D |
| BUILDING              |        |       |         |        |      |       |     |     |       |       |          | Г     |       |       |       |          |      |     |    |       |            |         |       |        |      |       |     |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
| structure             |        |       |         |        |      |       |     |     |       |       |          |       |       |       |       |          |      |     |    |       |            |         |       |        |      |       |     |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
| elec, plumbing, venti | ation, |       |         |        |      |       |     |     |       |       |          |       |       |       |       |          |      |     |    |       |            |         |       |        |      |       |     |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
| tests and trials      |        |       |         |        |      |       |     |     |       |       |          | Bu    | ildir | ng re | ady   |          |      |     |    |       |            |         |       |        |      |       |     |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
| reception             |        |       |         |        |      |       |     |     |       |       | •        |       |       |       |       |          |      |     |    |       |            |         |       |        |      |       |     |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
|                       |        |       |         |        |      |       |     |     |       |       |          |       |       |       |       |          |      |     |    |       |            |         |       |        |      |       |     |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
| EQUIPEMENT            |        |       |         |        |      |       |     |     |       |       |          | LIL S | ectio | on    |       |          |      |     |    |       |            |         |       |        |      |       |     |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
| linac + TL            |        | e     | quipn   | nent a | and  | tests |     | Ma  | agnet | 5 (   | <b>Ø</b> |       |       |       |       |          |      |     |    |       |            |         |       |        |      |       |     |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
| Ring + EL             |        | е     | quipn   | nent a | and  | tests | 0   | £   |       |       |          |       |       |       |       |          |      |     |    |       |            |         |       |        |      |       |     |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
| interaction laser     |        | e     | quipn   | nent a | and  | tests |     |     |       |       |          |       |       |       |       |          |      |     |    |       |            |         |       |        |      |       |     |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
| x ray line            |        | e     | quipn   | nent a | and  | tests |     |     |       |       |          |       |       |       | -     |          |      |     |    |       |            |         |       |        |      |       |     |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
| user area             |        |       |         |        |      |       |     |     | 1     | tests |          |       |       | RF (  | P LAL | •        |      |     |    |       |            |         |       |        |      |       |     |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
| RF source             |        | klyst | ron + I | modu   | lato | r     |     |     | ۰     |       |          |       | Ø.    |       | - í - |          |      |     |    |       |            |         |       |        |      |       |     |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
|                       |        |       |         |        |      |       |     |     |       |       |          | П     |       |       | - í - |          |      |     |    |       |            |         |       |        |      |       |     |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
| INSTALLATION IN BU    | ILDING |       |         |        |      |       |     |     | _     |       | 1        | St    | art i | nsta  | "     |          |      |     |    |       | , en       | d ins   | tall  | linad  | c    |       |     | _i.   |      |            | _     |        |      |        |     |    |   | _ |   | _ |     |
| linac + TL            |        |       |         |        |      |       |     |     |       |       | •        | Ι.    |       |       |       |          |      |     |    | •     |            | , end   | linst | tall r | ring |       |     |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
| Ring + EL             |        |       |         |        |      |       |     |     |       |       |          |       |       |       |       |          |      |     |    |       | $\diamond$ | end     | d ins | tall   | FP+  | laser | r   |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
| interaction laser     |        |       |         |        |      |       |     |     |       |       |          |       |       |       |       | 1        | able | e1  |    |       |            | -       | -     |        |      |       |     |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
| x ray line            |        |       |         |        |      |       |     |     |       |       |          |       |       |       |       | <b>(</b> |      | _ ( |    |       | -+         |         | -     | -      |      |       |     | 4     |      |            | end i | nstall | use  | r area | а   |    |   |   |   |   |     |
| user area             |        |       |         |        |      |       |     |     |       |       |          |       |       |       |       |          |      |     | er | nd in | stal       | l x lin | 1e    |        |      |       |     |       |      | <b>ў</b> — | -     |        |      |        |     |    |   |   |   |   |     |
|                       |        |       |         |        |      |       |     |     |       |       |          |       |       |       |       |          |      |     |    |       |            |         |       |        |      |       |     |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
| COMMISSONING          |        |       |         |        |      |       |     |     |       |       |          |       |       |       |       |          |      |     |    | _F    | P+s        | afety   | 1     |        |      |       |     |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
| linac + TL            |        |       |         |        |      |       |     |     |       |       |          |       |       |       |       |          |      |     |    | )     |            |         |       |        |      |       | Le  | elect | rons |            |       |        |      |        |     |    |   |   |   |   |     |
| Ring + EL             |        |       |         |        |      |       |     |     |       |       |          |       |       |       |       |          |      |     |    |       |            |         | J.    |        |      |       | 1   |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
| interaction laser     |        |       |         |        |      |       |     |     |       |       |          |       |       |       |       |          |      |     |    |       |            |         | Y     | .1     |      |       | F   | P+la  | ser  |            |       |        |      |        |     |    |   |   |   |   |     |
| x ray line            |        |       |         |        |      |       |     |     |       |       |          |       |       |       |       |          |      |     |    |       |            |         |       | Y      |      | х     | ray | opt   | imis | atio       | n     |        |      |        |     |    |   |   |   |   |     |
|                       |        |       |         |        |      |       |     |     |       |       |          |       |       |       |       |          |      |     |    |       |            |         |       |        |      |       |     |       |      |            |       | st     | artu | isers  | exp |    |   |   |   |   |     |
| users experiment      |        |       |         |        |      |       |     |     |       |       |          |       |       |       |       |          |      |     |    |       |            |         |       |        |      |       |     |       |      |            |       |        |      |        |     |    |   |   |   |   |     |
|                       |        |       |         |        |      |       |     |     |       |       |          |       |       |       |       |          |      |     |    |       |            |         |       |        |      |       |     |       |      |            |       |        |      |        |     |    |   |   |   |   |     |



VEELS 2017, 12/13-06-2017, N. Hubert