

Coordinating Synchronous (Real-Time) Motion Between EPICS Systems and PMAC Controllers

Curtis S. Wilson Delta Tau Data Systems, Inc.

ICALEPCS 2013 Conference San Francisco, California

The Path Until Now

- History of different controllers from multiple vendors
- Relatively unplanned evolution
- Result: "lowest common denominator"
 approach to EPICS/controller interface
- Usually single-axis, single-destination (pointto-point) move
- Extensions are difficult to achieve in current framework (e.g. streaming points in real time)

Multi-Axis & Multi-Move Sequences

- Multiple axes can be grouped together into "coordinate systems"
 - Easy to command fully synchronized motion of all axes in C.S.
 - Can be abstracted to look like single-axis command
- Coordinate system can execute multi-move sequences of one or more axes
 - Sequence of pre-planned moves executed in order
 - Can be abstracted to look like single-move command

Kinematics Subroutines

- Permit specification of motion in "work" (tool-tip) coordinates, even with very different underlying actuator geometries
- Permit mathematically nonlinear mapping between tooltip and actuator coordinates
- Inverse kinematics (tip -> actuator) solved at small intervals along paths
- Kinematic subroutines can be written in Script or C

Axis Matrix Transformations

- Permit change of programming reference frame
 - Supports mathematically linear transforms
 - Scaling, offset, rotation, skew, mirroring
- Useful to reference to placement of "workpiece"

$\begin{bmatrix} A \end{bmatrix}$]	$\left[k_{A}\right]$	0																0	A'	[d_A
B		0	k_B	0																B'		d_{B}
C			0	k_{C}	0	0	0													C'		d_c
				0	k_{U}	k_{UV}	$k_{\scriptscriptstyle UW}$	0												U'		d_{U}
V				0	k_{VU}	k_{V}	$k_{\scriptscriptstyle VW}$	0												V'		d_{V}
				0	$k_{\scriptscriptstyle WU}$	$k_{\scriptscriptstyle WV}$	$k_{\scriptscriptstyle W}$	0	0	0										W'		d_{W}
X					0	0	0	k_{X}	k_{XY}	k_{XZ}	0									X'		d_{X}
Y							0	k_{YX}	k_{Y}	k_{YZ}	0	•••								Y'		d_{Y}
							0	k_{ZX}	k_{ZY}	k_z	0									Z'		d_{z}
AA	-							0	0	0	k_{AA}									AA'	Т	d_{AA}
												•••										
TT		-										•••	k_{TT}	0	0	0				TT'		d_{TT}
												•••	0	$k_{\scriptscriptstyle UU}$	k_{UUVV}	k_{UUWW}	0			UU'		d_{UU}
VV												•••	0	k_{VVUU}	$k_{\scriptscriptstyle VV}$	$k_{\scriptscriptstyle VVWW}$	0			VV'		d_{VV}
WW												•••	0	$k_{\scriptscriptstyle WWUU}$	$k_{\scriptscriptstyle WWVV}$	$k_{\scriptscriptstyle WW}$	0	0	0	WW'		d_{WW}
XX												•••		0	0	0	k_{XX}	k_{XXYY}	k _{xxzz}	XX'		d_{XX}
YY												•••				0	k_{YYXX}	k_{YY}	k_{YYZZ}	YY'		d_{YY}
		0														0	k_{ZZXX}	k_{ZZYY}	k _{zz}	ZZ'		d_{zz}

Tightly Coupling Motion and Measurements

- Accurately tying digital I/O to physical position
 - "Capturing" position on digital input
 - "Comparing" position to create digital output
- Doing this while in high-speed motion
 - Accuracy is mostly product of velocity and time uncertainty
 - Great increase in throughput for given accuracy (or accuracy for given throughput) if time uncertainty can be reduced
- Increasing (effective) position measurement resolution helps accuracy

Basic Hardware Capture & Compare

At high (MHz) frequencies:

- Encoder inputs are sampled
- Counter can be incremented
- Present count can be latched on trigger
- Present count is checked against "compare" value

At low (kHz) frequencies: Compare Output

 Counter is latched for servo use

Two compare registers for a

registers for a counter

- Each can toggle digital output
- Toggle signal also causes increment value to be added to other compare value
- Uniformly spaced pulse train can be generated at very high frequency

DELTA TAU

Data Systems, Inc.

Capture/Compare Interrupt Update

- Capture and compare events can interrupt CPU at highest priority
- Custom ISR can react quickly to prepare for next event
- Typically store captured position to RAM buffer
- Typically load next compare position from RAM buffer
- Updates to 75 kHz
- Keep ISR short!

Sensors with Low-Frequency Access

- Many sensors do not support access at high enough frequency (or asynchronous access) for capture/compare purposes
 - Parallel-data interferometers
 - Serial-data encoders
 - SAR analog/digital converters
- Typically accessed at (kHz) servo rates
- To improve capture/compare accuracy, must tie to high-frequency (MHz) circuitry somehow
- Several methods can be used

Tracking Loop with Simulated Encoder

Actual Position

- Tracking loop reads sensor position once per servo cycle, compares it to counter value
- Error drives PFM circuit that can generate pulses at MHz rates
- Pulses feed
 counter
- Capture and compare use counter as for real encoder

Uses of Virtual Motors

- Without physical actuator attached, have great flexibility in commanding
 - Software functions for calculating and executing move commands
 - Can use interface circuitry or not
- Under EPICS single-motor command, can act as the commanded motor
 - Executes single point-to-point move
 - Real motors can do more sophisticated sequence
 - Full coordination of real and virtual motors
- With simulated encoder circuitry, can also tie to physical I/O

Synchronous Data Gathering

- Synchronous data logging at up to servo frequency
- Up to 128 memory and/or hardware registers per sample
- Key hardware registers latched on clock edges with jitter in low nanoseconds
- Capability for continuous streaming of gathered data
 - Can create real-time "scope" plot
- Easy export (in CSV format) to analysis programs

Full Embedded Computer Functionality

- Power PMAC is an embedded computer with built-in machine control application
- Provides full file system and communications tool suite
- Supports user C functions
 - Custom phase and servo algorithms
 - Fast kinematics and "PLC" functionality
- Supports independent C applications
 - Can eliminate separate computer
 - Reduces communications needs
 - e.g. EPICS software

