

Workshop on Advanced Data Collection with Multi-Axis Goniometry

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut, Swiss Light Source Meitian Wang

A Better Data Collection Strategy: You Can Always Use a Lower Dose

Workshop on Advanced Data Collection with Multi-Axis Goniometer and Single-Photon Counting Detector

SLS

BioStruct X

6-8 November 2012 Paul Scherrer Institut

http://indico.psi.ch/multiaxisgonio2012 Co-organized with *A. Thompson* and help from *G. Bricogne*

Three PX Beamlines at the Swiss Light Source

Beamline	PXI (X06SA)	PXII (X10SA)	PXIII (X06DA)
Source	U19	U19	2.9T Superbend
Energy range	6.0 – 17.5 keV	6.5 – 20.0 keV	5.5 – 17.5 keV
Flux, phs/s (12.4 keV, focused beam)	2 × 10 ¹¹ <-> 2 × 10 ¹²	2 × 10 ¹²	5 × 10 ¹¹
Beamsize, µm ² (with focusing, slits)	2 × 1 <-> 100 × 100 (fast beam size change)	50 × 10 30 × 10, 20 × 10, 10 × 10	80 × 45 µm ²
Goniometer	Micro-diffractometer (SmarGon)		Multi-axis, PRIGo (SmarGon)
Detector	EIGER 16M	PILATUS 6M	PILATUS 2M
Data collection time	2 – 3 minutes		
Sample changer	IRELEC CATS		
Industrial usage	15%	50%	40%
PAUL SCHE	RRER INSTITUT	Roche UNOVART	IS ACTELION Destructures

Geometric Data Collection

Unique volume and unique reflections

Figure 6.6. Unique volume in reciprocal space for a monoclinic crystal.

Figure 6.7. Unique volume in reciprocal space for an orthorhombic crystal.

Table 1

Rotation range (°) required to collect a complete data set in different crystal classes.

The direction of the spindle axis is given in parentheses; ac means any vector in the ac plane.

Point group	Native data	Anomalous data
1	180 (any)	$180 + 2\theta_{max}$ (any)
2	180 (b); 90 (ac)	$180 (b); 180 + 2\theta_{max} (ac)$
222	90 (ab or ac or bc)	90 (ab or ac or bc)
4	90 (c or ab)	90 (c); 90 + θ_{max} (ab)
422	45 (c); 90 (ab)	45 (c); 90 (ab)
3	60 (c); 90 (ab)	$60 + 2\theta_{max}(c); 90 + \theta_{max}(ab)$
32	30 (c); 90 (ab)	$30 + \theta_{max}(c); 90 (ab)$
6	60 (c); 90 (ab)	60 (c); 90 + θ_{max} (ab)
622	30 (c); 90 (ab)	30 (c); 90 (ab)
23	~60	~70
432	~35	~45

Rotation method and rotation range

Stout and Jensen (1989), Dauter, Acta Cryst. D55, 1703 (1999)

Geometric Data Collection with Multi-Axis Goniometry

• Avoid blind region

• Align long unit-cell axis to avoid spots overlaps

 Align even-fold rotation axis to record Bijvoet pairs on the same image

Misaligned:

Aligned to twofold:

(XOAlign, Stratcalc)

Radiation Damage

M. Warkentin et al. J. Synchrotron Rad. 20, 7 (2013)

Native data collection (20 MGy)

- Henderson, Proc. R. Soc. B. 241, 6 (1990)
- Owen, et al. Proc. Natl. Acad. Sci. USA, 103, 4912 (2006)

Experimental phasing (< 5 MGy)

- Holton, J. M. J. Synchrotron Rad. 14, 51 (2007)
- Olieric, et al. Acta Cryst. D63, 759 (2007)

Rule of thumb

- Resolution dependency of 10 MGy / Å, Howells et al. J. El. Spect. & Rel. Phen. 170, 4 (2009)
- Scaling B factor vs. dose of ~ 1 B-factor / MGy, Kmetko et al. Acta Cryst. D62, 1030 (2006)
- Does estimation, Holton, J. Synchrotron Rad. **16**, 133 (2009) $Dose = (t_{expo} \times flux) / (k_{dose} \times I_{H-beam} \times I_{B-beam})$ $k_{dose} = 2000\lambda^{-2}$

"Traditional" Data Collection Strategy

High-dose low multiplicity data collection strategy (180° data within dose limit) $\int_{0^{\circ}}^{0^{\circ}}$

Intensity Data Collection: Counting Statistics

Random errors, counting statistics

Fine-phi slicing data collection is enabled by the pixel array detector (PILATUS, EIGER), which has single-photon sensitivity and no readlout noise

Intensity Data Collection: Reduce Background

Spot resolution with EIGER 16M detector (75 µm pixel) at beamline PXI, SLS

- *Precision* of measurements tells us how much they differ *from each other*
- To increase precision → repetitive measurements (high multiplicity) within radiation damage limit
- Accuracy of measurements tells us how much they differ from the truth, but the truth is not known
- To improve accuracy → reduce systematic errors: beam stability, diffraction geometry, crystal orientation, absorption and variation, detector non-ideality, ...
- All data quality indicators measure precision, not accuracy!

Random errors, counting statistics

Asymptotic behavior of I/σ (*ISa*)

Achievable I/σ is limited by systematic errors, ISa

Diederichs, Acta Cryst. D66, 733 (2010)

 $(I/\sigma)^{\text{asymptotic}}$ plots of data sets of 180° collected at 6 keV with 1.5×10^{10} photons/s

- Achievable I/σ at low-med resolution (phasing) is limited by systematic error
- Achievable I/σ at high resolution (refinement) is limited by counting statistics
- Low *ISa* means high systematic error
- Good datasets have *ISa* > 30, bad ones < 10

Diederichs, Acta Cryst. D66, 733 (2010)

1 sec exposure with 1.5 × 10¹¹ ph/sec 1° oscillation at beamline X10SA, SLS 1 sec exposure with 1.5 × 10¹⁰ ph/sec 0.5° oscillation at beamline X06DA, SLS

Dose-slicing Data Collection Strategy

Dose-slicing high multiplicity data collection strategy, Liu *et al. Acta Cryst.* **A67**, 544, (2011) $(n \times 360^{\circ} \text{ data within dose limit})$

Multi-orientation data collection with multi-axis goniometer

a) b)

Manipulating crystal orientation changes

- **I) Diffraction geometry**
- 2) X-ray absorption path
- 3) Position of reflections on detector

Sampling diffraction geometry, absorption path, and detector surface to average out systematic measurement errors

Waltersperger et al. J. Synchrotron Rad. 22, 895 (2015).

Multi-Orientation Data Collection Strategy

 $(n \times 360^{\circ} \text{ data within dose limit})$

Multi-orientation high multiplicity data collection strategy, Weinert *et al. Nature Methods* **12**, 131, (2015) $(n \times 360^{\circ} \text{ data in multiple crystal orientation within dose limit)$

Advantage of Multi-Orientation Strategy

Low-Dose Strategy Allows Radiation Damage Control

• Phasing by anomalous dispersion has been and still is by far the most popular *de novo* structure determination method

SAD structures in the PDB. PDB entries are as of 31 December 2014. *De novo* low-resolution SAD structures as defined here have $d_{\min} \ge 3.5$ Å. *De novo* native-SAD structures as defined here have no preceding PDB deposits and have not contained atoms heavier than atomic number 20.

Liu & Hendrickson Curr. Opin. Struc. Bio. 34, 99 (2015)

Current challenges

- Low-res SAD with d > 3.5 Å
- Native-SAD with Z < 20 (Vincent Olieric's talk in Session II)

Distributing tolerable X-ray does into multiple data sets measured at different crystal orientation can improve accuracy of intensity measurement

Low-dose, high-multiplicity, multi-orientation data collection strategy helps in abstracting weak anomalous signals for experimental phasing

Development in synchrotron beamline X-ray optics, multi-axis goniometer and pixel array detector has changed MX data collection strategies

Acknowledgement

X06SA micro-focusing upgrade

WinlightX

Clemens Schulze-Briese, Claude Pradervand, Roman Schneider, James Leuenberger, and MX group

EIGER 16M

DECTRIS

Kommission für Technologie und Innovation KTI

Stefan Brandstetter, Clemens Schulze-Briese, Andreas Förster, Oliver Bunk, Arnau Casanas, and MX group

PRIGo/SmarGon/Native-SAD

Tobias Weinert, Vincent Olieric, Sandro Waltersperger, Claude Pradervand,, Ezequiel Panepucci

Data processing

Kay Diederichs

Global Phasing Ltd.

Many many collaborators providing test crystals and ideas!

Thank you for your attention!

