

Réunions scientifiques

Séminaire SOLEIL

Giant Rashba Effects on Semiconducting Substrates

E. FRANTZESKAKIS

(Laboratoire de Spectroscopie Électronique, Institut de Physique de la Matière Condensée, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Suisse)

Vendredi 23 juillet à 14h00 Grand Amphi SOLEIL

The degeneracy of electronic states of opposite spins is lifted at surfaces or interfaces due to the lack of inversion symmetry and to the out-of-plane gradient of the crystal potential. The splitting can be further enhanced by a strong in-plane potential gradient in a surface alloy **[1]**. Although the emerging field of spintronics is based on the exploitation of spin-orbit effects on semiconductors, the above results were obtained on metallic surfaces or interfaces.

We will explore two novel semiconductor-based systems with spin-orbit parameters of the same order of magnitude as in the metallic surface alloys. In the trilayer Si(111)-Ag-Bi system, the alloy was formed on a ultrathin silver film which is itself deposited on a clean Si(111) surface. By adjusting the thickness of the Ag buffer layer we report a strong interaction of its quantum well states and the spin-split electronic states of the alloy. Angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations evidence the formation of spin-dependent gaps whose number and energy positions can be tuned making possible the tailoring of the electronic structure near the Fermi energy **[2]**. Secondly, the Si(111)-Bi trimer phase is examined by a combination of ARPES and different theoretical approaches. Interestingly, its peculiar band topology and the enhanced spin-orbit parameters can be captured by an empirical tight-binding model **[3, 4]**.

References:

C.R. Ast et al., Phys. Rev. Lett. 98, 186607 (2007).
E. Frantzeskakis et al., Phys. Rev. Lett. 101, 196805 (2008).
I Gierz et al., Phys. Rev. Lett. 103, 046803 (2009).
E. Frantzeskakis et al., arXiv 1006.3566 (2010).

Formalités d'entrée : accès libre dans l'amphi du Pavillon d'Accueil. Si la manifestation a lieu dans le Grand Amphi Soleil du Bâtiment Central, merci de vous munir d'une pièce d'identité (à échanger à l'accueil contre un badge d'accès).

SYNCHROTRON SOLEIL

Division Expériences - L'Orme des merisiers - Saint-Aubin - BP 48 – 91192 GIF S/VETTE Cedex http://www.synchrotron-soleil.fr/Soleil/ToutesActualites Secrétariat Division Expériences : sandrine.vasseur@synchrotron-soleil.fr